
SQL: Data Update & View Definition
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

Recap: SQL Queries
SELECT [DISTINCT] <attribute list>  
FROM <table list>  
[WHERE <condition on the tables>]  
[GROUP BY <grouping attributes>] 
[HAVING <group condition>]  
[ORDER BY <attribute list> ASC | DESC]  
[LIMIT <number of tuples>]

CS 377 [Spring 2016] - Ho

SQL Query: Temporal Relation
• Result of a SELECT clause that exists temporally, which

assists you in formulating a query

• Syntax: 
SELECT <attributes>  
FROM R1, R2, (SELECT …) <alias>, …, RN  
WHERE <condition>;

• Must always use an alias to denote the result relation of
the SELECT command

CS 377 [Spring 2016] - Ho

SQL Example: Temporal Relation
Find fname, lname of male employees with salary > 50K

SELECT *  
FROM (SELECT fname, lname, salary  
 FROM employee  
 WHERE sex = ‘M’) r1  
WHERE r1.salary > 50000

CS 377 [Spring 2016] - Ho

SQL Query: Temporal Relation Notes
• You can use multiple temporal relations

• You cannot use a temporal relation to create another
temporal relation 
 
Example of incorrect usage: 
SELECT …  
FROM …,  
 (SELECT …) r1,  
 (SELECT … FROM r1 …) r2,  
WHERE …;

CS 377 [Spring 2016] - Ho

SQL Query: WITH
• SQL-99 standard introduced WITH clause to help refine the result of

a query (another way to achieve temporal relation)

• Some vendors do not support WITH (e.g., MySQL)

• Syntax: 
WITH <alias> AS (SELECT …)[, 
 <alias2> AS (SELECT …)] 
SELECT <query>;

• Can be used to perform “refinement” on a query

• Subsequent queries in the WITH clause can use the results of the
previous query

CS 377 [Spring 2016] - Ho

SQL Example: WITH
Find all information on dependents of John Smith

WITH r1 as (SELECT *  
 FROM employee  
 WHERE fname = ‘John’  
 AND lname = ‘Smith’)  
SELECT *  
FROM dependent  
WHERE essn IN (SELECT ssn from r1);

CS 377 [Spring 2016] - Ho

SQL Query: JOIN Operations
• SQL-99 standard added several join operations:

• INNER JOIN (normal join)

• LEFT JOIN (left outer join)

• RIGHT JOIN (right outer join)

• FULL JOIN (outer join)

• Each operation results in a relation

• Operation can only appear in:

• FROM clause of SELECT command

• WHERE clause of SELECT command with an operator that uses a sub-query

CS 377 [Spring 2016] - Ho

SQL Query: [INNER] JOIN
• Compute the (inner) join between tables r1 and r2 with a

given join condition

• Syntax:  
r1 JOIN r2 ON <join-condition>;  
or  
r1 INNER JOIN r2 ON <join-condition>;

• JOIN operator makes the SQL query look a lot like RA
query

• Can join more than 2 relations

CS 377 [Spring 2016] - Ho

SQL Example: INNER JOIN
Find fname, lname of employees in the ‘Research’
department

RA Query:  

SQL Query:  
SELECT fname, lname  
FROM (employee JOIN department  
 ON dno = dnumber)  
WHERE dname = ‘Research’;

⇡
fname,lname

(�
dname=‘Research’

)(EMPLOYEE ./
dno=dnumber

DEPARTMENT))

CS 377 [Spring 2016] - Ho

SQL Query: OUTER JOIN
• Compute the outer join between tables r1 and r2 with a

given join condition - see RA slides for details on
difference between left, right, and full outer joins

• Syntax: 
r1 LEFT | RIGHT| FULL [OUTER] JOIN r2 on <join
condition>;

• Results in NULL values for the attributes where non-
matching tuples occur

CS 377 [Spring 2016] - Ho

SQL Query: NATURAL JOIN
• Compute the natural join on attributes with the same

names from two or more tables with the common
attribute appearing only once in the result

• Syntax: 
r1 NATURAL JOIN r2;

• Example: 
SELECT *  
FROM works_on NATURAL JOIN dependent;

CS 377 [Spring 2016] - Ho

SQL Query: CROSS JOIN
• Cross join is the same as a Cartesian Product

• Syntax: 
r1 CROSS JOIN r2;

• Example: 
SELECT ssn, fname, lname, dno, dnumber, dname  
FROM employee CROSS JOIN dependent;

CS 377 [Spring 2016] - Ho

• Data definition

• Database Creation

• Table Creation

• Query (SELECT)

• Data update (INSERT, DELETE, UPDATE)

• View definition

SQL Outline

CS 377 [Spring 2016] - Ho

SQL Modifications/Updates
• A modification command does not return a result but it

changes the database

• There are 3 kinds of modifications

• INSERT tuple(s)

• DELETE tuple(s)

• UPDATE the value(s) of existing tuples

CS 377 [Spring 2016] - Ho

SQL Modification: INSERT
• Add one more more tuples to an existing relation

• Two forms of INSERT:

• Literal values (constant or known values)

• Result from a SELECT command

CS 377 [Spring 2016] - Ho

SQL Modification: INSERT (2)
Inserting a tuple using literal/constant values 
Syntax: 
INSERT INTO <table name>[(<attr names>)]  
VALUES (<list of values>);

• Complete tuple: omitting [(<attr names>)] means you
must specify all attribute values in the exact order
defined in relation

• Partial tuple: specify a subset of the attribute values in
the same order as the list of attributes [(<attr names>)]

CS 377 [Spring 2016] - Ho

SQL Modification: INSERT (3)
Inserting a tuple using SELECT command 
 
Syntax: 
INSERT INTO <table name>[(<attr names>)] (<SELECT
subquery>)

• Multiple tuples may be added dependent on the
SELECT subquery relation

CS 377 [Spring 2016] - Ho

SQL Example: INSERT
• Complete tuple: 
 
INSERT INTO employee VALUES (‘Joyce’, ‘C’, ‘Ho’,
‘111223333’, ’1985-02-05’, ‘400 Dowman Drive,
Atlanta, GA’, ‘F’, ‘150000’, ‘987654321’, 5);

• Partial tuple:  
 
INSERT INTO employee(fname, lname, ssn) VALUES
(‘Joyce’, ‘Ho’, ‘111223333’);

CS 377 [Spring 2016] - Ho

SQL Example: INSERT w/ SELECT
Suppose we want a new table that has the name, number of
employees, and total salaries for each department. We first create the
table then load it with the information from the database.

CREATE TABLE dept_info 
(dept_name VARCHAR(10), 
 no_of_emps INT, 
 tot_salary INT);

INSERT INTO dept_info 
 (SELECT dname, count(*), sum(salary) 
 FROM department, employee  
 WHERE dnumber = dno 
 GROUPY BY dname);

CS 377 [Spring 2016] - Ho

MySQL: Bulk Import
• All respectable RDBMS provide utilities to import data

from text files

• Syntax for uploading data will vary based on vendor

• MySQL allows the LOAD DATA INFILE  
(http://dev.mysql.com/doc/refman/5.7/en/load-data.html)

• For a pipe-delimited file (| separates each column):  
LOAD DATA LOCAL INFILE <filename> 
{REPLACE | IGNORE} INTO TABLE <table name>  
FIELDS TERMINATED BY ‘|’;

http://dev.mysql.com/doc/refman/5.7/en/load-data.html

CS 377 [Spring 2016] - Ho

SQL Modification: DELETE
• Remove tuples from a relation

• Syntax: 
DELETE FROM <relation> 
WHERE <condition>;

• Be careful! All tuples that satisfy the condition clause are deleted

• Tuples are deleted from only one table at a time unless
CASCADE is specified on a referential integrity constraint

• What happens if we don’t specify a WHERE clause? 

CS 377 [Spring 2016] - Ho

SQL Example: DELETE
Delete all employees with the last name Brown

DELETE FROM employee  
WHERE lname = ‘Brown’;

CS 377 [Spring 2016] - Ho

SQL Example: DELETE (2)
Delete all employees from the ‘Research’ department who
have more than 2 dependents

DELETE FROM employee  
WHERE dno IN (SELECT dnumber  
 FROM department  
 WHERE dname = ‘Research’)  
 AND ssn IN (SELECT essn  
 FROM dependent  
 GROUP BY essn  
 HAVING COUNT(name) > 2);

CS 377 [Spring 2016] - Ho

SQL Modification: UPDATE
• Modify/change certain attributes in certain tuples of a

relation

• Syntax: 
UPDATE <relation> 
SET <list of attribute assignments>  
WHERE <condition>;

• UPDATE command modifies tuples in the same relation

CS 377 [Spring 2016] - Ho

SQL Example: UPDATE
Change the location and controlling department number of
project 10 to ‘Bellaire’ and 5, respectively.

UPDATE project 
SET plocation = ‘Bellaire’, dnum = 5  
WHERE pnumber = 10;

CS 377 [Spring 2016] - Ho

SQL Example: UPDATE (2)
Give all employees in the ‘Research’ department a 10% raise

UPDATE employee  
SET salary = salary * 1.1  
WHERE dno IN (SELECT dnumber 
 FROM department 
 WHERE dname = ‘Research’);

• Reference to salary attribute on the right of = refers to the
salary value before modification

• Reference to salary attribute on the left of = refers to salary
value after modification

CS 377 [Spring 2016] - Ho

SQL: VIEW
• A view is a virtual table, a relation that is defined in terms

of the contents of other tables and views

• A view does not exist in the physical form

• In contrast, a relation whose value is really in the
database is called a base table

• Syntax: 
CREATE VIEW <name> AS <query>;

CS 377 [Spring 2016] - Ho

SQL: View & Logical Data Independence
• Recall Logical Data Independence  

(class on Database Concepts)

• Ability to present the stored information in a different way to
different users

• View can be adapted to the  
need of the user

• If conceptual schema  
changes, only the SELECT 
query needed to construct 
view needs to change

CS 377 [Spring 2016] - Ho

SQL Example: VIEW
• Suppose an administrator maintains a list of activities of all employees

which contains the following information:  
fname, lname, project_name, hours_worked

• Regular SELECT query: 
SELECT fname, lname, pname, hours 
FROM employee, works_on, project 
WHERE ssn = essn AND pno = pnumber;

• Create VIEW for the admin:  
CREATE VIEW emp_activity 
AS (SELECT fname, lname, pname, hours 
 FROM employee, works_on, project 
 WHERE ssn = essn AND pno = pnumber); 

CS 377 [Spring 2016] - Ho

SQL: VIEW Advantages
• View can be used in queries like an ordinary relation

• When a view is used in a SELECT query, the virtual relation
is computed first

• Simplify complex queries by hiding them from the end-user
and applications

• Limit data access to specific users (expose only non-sensitive
data) and provides extra security for read/write access

• Enables backward compatibility - changes to database won’t
affect changes to other applications

CS 377 [Spring 2016] - Ho

SQL: VIEW Disadvantages
• Querying data from database view can be slow (since

view is computed each time)

• Tables dependency - updates to the underlying tables will
force changes to the view itself to make it work properly

• Most data manipulation statements (INSERT, DELETE,
UPDATE) are not possible on the view

CS 377 [Spring 2016] - Ho

SQL Data Update & View: Recap
• Query

• Temporal Relation / WITH

• JOIN

• SQL Modification

• INSERT

• DELETE

• UPDATE

• SQL Views

CS 377 [Spring 2016] - Ho

More SQL Practice
Find the fname, lname of employees with more than 2
dependents and work on all projects controlled by
department #1

CS 377 [Spring 2016] - Ho

More SQL Practice
Find the fname, lname of employees with more than 2
dependents and work on all projects controlled by
department #1

SELECT fname, lname  
FROM employee  
WHERE <employee has more than 2 dependents>  
 AND <works on all projects controlled by dept #1>;

First formulate in words

conquer each subquery separately

CS 377 [Spring 2016] - Ho

More SQL Practice: Subquery #1
Find employee that has more than 2 dependents

SELECT essn 
FROM dependent  
GROUP BY essn 
HAVING COUNT(name) > 2;

CS 377 [Spring 2016] - Ho

More SQL Practice: Subquery #2
Find employees that works on all projects controlled by
department #1 - set difference technique

SELECT ssn 
FROM employee e  
WHERE NOT EXISTS  
 < set of projects controlled by department #1 >  
 - <set of projects worked on by e.ssn>;

CS 377 [Spring 2016] - Ho

More SQL Practice: Subquery #2
Find employees that works on all projects controlled by department #1 - set
difference technique

SELECT ssn  
FROM employee e 
WHERE NOT EXISTS (SELECT pnumber 
 FROM project 
 WHERE pnumber IN  
 (SELECT pnumber 
 FROM project 
 WHERE dnum = 1) 
 AND pnumber NOT IN 
 (SELECT pno 
 FROM works_on 
 WHERE essn = e.ssn));

CS 377 [Spring 2016] - Ho

More SQL Practice: Putting it Together
Find the fname, lname of employees with more than 2 dependents and work on all projects controlled by
department #1

SELECT fname, lname 
FROM employee 
WHERE ssn IN (SELECT essn  
 FROM dependent  
 GROUP BY essn  
 HAVING COUNT(name) > 2)  
 AND ssn IN (SELECT ssn  
 FROM employee e  
 WHERE NOT EXISTS (SELECT pnumber 
 FROM project  
 WHERE pnumber IN  
 (SELECT pnumber  
 FROM project  
 WHERE dnum = 1)  
 AND pnumber NOT IN  
 (SELECT pno  
 FROM works_on  
 WHERE essn = e.ssn)));

CS 377 [Spring 2016] - Ho

More SQL Practice (2)
Find the department name, and the number of employees
in that department that earns more than 40K for
departments with at least 2 employees

CS 377 [Spring 2016] - Ho

More SQL Practice (2)
Find the department name, and the number of employees
in that department that earns more than 40K for
departments with at least 2 employees

SELECT dname, COUNT(ssn)  
FROM department, employee  
WHERE dnumber = dno  
 AND salary > 40000  
GROUP BY dname 
HAVING COUNT(ssn) >= 2;

What is wrong with this solution?

CS 377 [Spring 2016] - Ho

More SQL Practice (2): Solution
Find the department name, and the number of employees in that
department that earns more than 40K for departments with at
least 2 employees

SELECT dname, COUNT(ssn) 
FROM department, employee 
WHERE dnumber = dno  
 AND salary > 40000 
 AND dno IN (SELECT dno  
 FROM employee 
 GROUP BY dno 
 HAVING COUNT(ssn) >= 2) 
GROUP BY dname;

CS 377 [Spring 2016] - Ho

More SQL Practice (3)
Find fname, name of employees who work on 2 or more
projects together with John Smith

CS 377 [Spring 2016] - Ho

More SQL Practice (4)
Find departments who have 2 or more employees working
on all projects controlled by ‘Research’ department

