Query Optimization: Sorting &
Joining

CS 377: Database Systems

Recap: Query Processing

Some database
operations are expensive

e parser and relational-algebra
Performance can be G| i o

improved by being “smart”

query
output

evaluation engine

'execution plan

RA expressions can be
optimized via heuristics

data statistics
about data

Cost-based optimization
to determine “best” query
plan

Figure 12.1 from Database System Concepts book

CS 377 [Spring 2016] - Ho

Example: SQL Query Step 1

Step 1: Convert SQL query into a parse tree

SELECT movleTltle
FROM Starsin , MovleStar
WHERE starName = name

AND Dblrthdate LIKE '%1960°

v

<Query

SELECT <Selllst> FROM <FromLlst> WHERE <Condx>

7\ /N

<Attribute> <RelName» , <FromLlIst> <Condx AND <Cond>
movlieTltle Starsin <RelName> cAttr> =<Attr> <cAttr> LIKE <Pattern=
MovleStar starName name blrthdate "% 1960"

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html
CS 377 [Spring 2016] - Ho

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

Example: SQL Query Step 2

Step 2: Convert parse tree into initial logical query plan
using RA expression

T

O starName = name
birthdate LIKE "%1960°

|
X

N

MovlaStar Starsin

movieTltle

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

Example: SQL Query Step 3

Step 3: Transform initial plan into optimal query plan using
some measure of cost to determine which plan is better

T

"movleTltle T
| movleTitle
0] starName = name N
birthdate LIKE "% 1960° starName =hame
X Gblrthdate MovileStar
LIKE
/ \ *%1960"
MovleStar Starsin Starsin
Swapped !
Initlal Query Plan Optimal Query Plan

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

Example: SQL Query Step 4

Step 4: Select physical query operator for each relational
algebra operator in the optimal query plan

One passTl
Tl:mo'.erTItle
‘ Index-Jom
N Index on name
starName =name
/ — blrthdate
G \ Filter (LIKE MovlaeStar

birthdate MovlaStar 02 1960"

LIKE

*%1960"

Starsin TableScan(starsin)

Physlcal Query Plan
Optimal Loglcal Query Plan ¥ ¥

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

Recap: Catalog Information

Database maintains statistics about each relation

- Size of file: number of tuples [n], number of blocks [b/], tuple
size [s¢], numlber of tuples or records per block [fi], etc.

- Information about indexes and indexing attributes
- Attribute values - number of distinct values [V(att, r)]

+ Selection cardinality - expected size of selection given value
[SC(att, r)]

CS 377 [Spring 2016] - Ho

Recap: Cost-based Optimization

SELECT algorithms
+ Linear search
» Binary search

- |ndex search

Different costs depending on the file
organization and indexes

CS 377 [Spring 2016] - Ho

Sorting

-+ One of the primary algorithms used for query processing
- ORDER BY
- DISTINCT

- JOIN

- Relations that fit iIn memory — use techniques like
quicksort, merge sort, bubble sort

- Relations that don't fit in memory — external sort-merge

CS 377 [Spring 2016] - Ho

External Sort-Merge Algorithm

- Problem: Sort r records, stored in b file blocks with a total
memory space of M blocks

+ Create sorted runs with i = 0
- Read M blocks of relation into memory
- Sort the in-memory blocks

- Write sorted data to run R, increment |

CS 377 [Spring 2016] - Ho

External Sort-Merge Algorithm (2)

- Merge the sorted runs: merge subfiles until 1 remains

- Select the first record in sort order from each of the
buffers

- Write the record to the output

- Delete the record from the buffer page, and read the
next block it empty

- Total cost: b,.(2[|logy;_1(b./M)]| + 1)

CS 377 [Spring 2016] - Ho

Example: External Merge Sort

Sort fragments of
file INn memory
using internal sort
— where each
run size is the
size of the block

For this example,
use block size =
3 tuples

24

19

31

33

14

16

16

21

3

2

7

mg»@ggﬂmc‘ngmm

14

initial
relation

run 2

run 3

run 4

Figure 12.4 from Database System Concepts book
CS 377 [Spring 2016] - Ho

Example: External Merge Sort (2)

a |19
g |24 d (31 |
a (19 g 24
d [31 |
¢ |33 b . Once each run is
I) sorted, we wil
e
L merge two runs
r 1
I together at a time
m |
ml 3] i merge 2
pl2
d| 7 a |14
a |14 d| 7F
initial P| 2
relation runs
create 1
runs }

Figure 12.4 from Database System Concepts book
CS 377 [Spring 2016] - Ho

Example: External Merge Sort (3)

24
19
31

33
14
16
16
21
3
2
7
14

PO I8 T P |T 0] a0

initial
relation

a |19 2119
d31~ |p[14
g |24 >* c |33
b |14 d| 31
c 33/ |e|l6
e |16 5| 2
d |21 2 114
m 3_\ a7
r |16 K d1 21
a |14 e
d 7_J p| 2
bl 2 r |16
runs runs

create merge

runs pass—1

CS 377 [Spring 2016] - Ho

Another layer of
sorted runs, SO
again merge 2

runs at a time...

Figure 12.4 from Database System Concepts book

Example: External Merge Sort (4)

a |19 T
S £ I
-~ T 1031 b |14
- c 33/ |e]|l6 ¢ |99
b (14 d| 7
e 16 e |16 8| 2% d| 21
r |16 d| 31
d [21 e a1 e |16
m) S~ 4|7
m| 3 g |24
r |16
pl2 1912 m| 3
d|7 aia] [|m3 pl 2
a |14 a7 |P[]? r |16
b2 r |16
initial sorted
relation runs runs output
create merge merge
runs pass-—1 pass—2

Figure 12.4 from Database System Concepts book
CS 377 [Spring 2016] - Ho

JOIN

+ One of the most time-consuming operations

- EQUIJOIN & NATURAL JOIN varieties are most
prominent — focus on algorithms for these

- Two way join: join on two files

-+ Multi-way joins: joins involving more than two files

CS 377 [Spring 2016] - Ho

JOIN Performance

Factors that affect performance
- Tuples of relation stored physically together
- Relations sorted by join attribute

- Existence of indexes

CS 377 [Spring 2016] - Ho

JOIN Algorithms

- Several different algorithms to implement joins
-+ Nested loop join
 Nested-block join
- Indexed nested loop join
+ Sort-merge join
+ Hash-join

- Choice Is based on cost estimate

CS 377 [Spring 2016] - Ho

Example: Bank Schema

- Join depositor and customer tables
- Catalog information for both relations:
* Neustomer = 10000
* Toustomer = 25 => Deustomer = 10000/25 = 400
* Ndepositor = D000
* Taepositor = 50 => Dyepositor = 5000/50 = 100
- V(cname, depositor) = 2500 (each customer on average has 2 accounts)

- Cname in depositor is a foreign key of customer

CS 377 [Spring 2016] - Ho

Cardinality of Join Queries

- Cartesian product or two relations R x S contains nr * ns
tuples with each tuple occupying sr + Ss bytes

- fRNS=0,then R~ S isthe sameas R x S
- f RN Sis akeyin R, then a tuple of s will join with one
tuple from R => the number of tuples in the join will be no

greater than the number of tuples in S

- If RN .S is a foreign key in S referencing R, then the
number of tuples is exactly the same number as S

CS 377 [Spring 2016] - Ho

Cardinality of Join Queries (2)

- If RNS ={A} and Alis not a key of R or S there are two
estimates that can be used

- Assume every tuple In R produces tuples In the join,
number of tuples estimated:
nNpr * nNg
V(A,s)
- Assume every tuple in S produces tuples in the join,
number of tuples estimated:
Nr *Ng
V(A,r)
- Lower of two estimates is probably more accurate

CS 377 [Spring 2016] - Ho

Example: Cardinality of Join

+ Estimate the size of Depositor < Customer

-+ Assuming no foreign key:

- V(chame, depositor) = 2500 =>
5000 * 10000 / 2500 = 20,000

- V(chame, customer) = 10000 =>
5000 * 10000 / 10000 = 5000

+ Since cname in depositor Is foreign key of customer, the
size Is exactly Ndepositor = 5000

CS 377 [Spring 2016] - Ho

Nested Loop Join

- Default (orute force) algorithm

- Requires no indices and can be used with any join
condition

- Algorithm:
for each tuple tr in r do
for each tuple ts in s do
test pair (t;, ts) to see if condition satisfied

if satisfied, output (tr, ts) pair

- R is the outer relation and S is the inner relation

CS 377 [Spring 2016] - Ho

Nested Loop Join Cost

EXpensive as It examines every pair of tuples in the two
relations

If smaller relation fits entirely in main memory, use that
relation as inner relation

-+ Worst case: only enough memory to hold one block of
each relation, estimated cost is nr * bs + by

Best case: smaller relation fits in memory, estimated cost
IS br + bbs disk access

CS 377 [Spring 2016] - Ho

Example: Nested Loop Join

- Worst case memory scenario:

-+ Depositor as outer relation: 5000 * 400 + 1000 =
2,000,100 I/Os

- Customer as outer relation: 10000 * 100 + 400 =
1,000,400 I/Os

-+ Best case memory scenario (depositor fits in memory)

- 100 + 400 = 500 I/Os

CS 377 [Spring 2016] - Ho

Nested-Block Join

Instead of individual tuple basis, join one block at a time together

- Algorithm:
for each block iInr do
for each block in s do

use nested loop join algorithm on blocks
to output matching pairs

- Worst case: each block in the inner relation s is only read once

for each block in the outer relation, so estimated cost is by * bs +
of

-+ Best case: same as nested loop with cost by + s

CS 377 [Spring 2016] - Ho

Nested-Block vs Nested Loop Join

Assume worst memory case

 Nested loop join with depositor as inner relation: 10000 *
100 + 400 = 1,000,400 I/Os

+ Nested-block join with depositor as inner relation: 400 ~
100 + 400 = 40400 |/Os

What if a disk speed is 360K |/Os per hour?

- Nested loop join ~= 2.78 hours A very small change
can make a huge

- Nested-block join ~= 0.11 hours difference in speed!

CS 377 [Spring 2016] - Ho

Indexed Nested-Loop Join

- Index Is avallable on inner loop’s join attribute — use index to
compute the join

- Algorithm:
for each tuple t, in r do
retrieve tuples from s using index search

- Worst case: buffer only has space for one page of r and one
page of index, estimated cost is br + Ny * ¢ (C Is cost of single
selection on s using join condition)

- |f indices available on both relations, use one with fewer
tuples as outer relation

CS 377 [Spring 2016] - Ho

Example: Index Nested Loop Join

- Assume customer has primary B™-tree index on customer
name, which contains 20 entries in each node

- Since customer has 10,000 tuples, height of tree is 4

- Using depositor as outer relation, estimated cost: 100 +
5000 * (4 + 1) = 25,100 disk accesses

- Block nested-loop join cost: 100 * 400 + 100 = 40,100 1/Os

- Cost is lower with index nested loop than block nested-loop
join

CS 377 [Spring 2016] - Ho

Sort-Merge Join

+ Sort the relations based on the join

attributes (if not already sorted) al a2 al a3
7 a3 P lala
Merge similar to the external sort- o Lk
merge algorithm with the main d 13 i N
difference in handling duplicate £ |7 m| B
values in the join attribute — every o S

pair with same value on join ;

attrIbUte mUSt be matChed Figure 12.8 from Database System

Concepts book

CS 377 [Spring 2016] - Ho

Sort-Merge Join (2)

-+ Can only be used for equijoins and natural joins

-+ Each tuple needs to be read only once, and as a result,
each block is also read only once
cost = sorting cost + br + bs

If one relation Is sorted, and other has secondary B+-tree
iINndex on join attribute, hybrid merge-joins are possible

CS 377 [Spring 2016] - Ho

Hash-Join

- Applicable for equijoins and natural joins

-+ A hash function, h, is used to partition tuples of both
relations into sets that have same hash value on the join
attributes

+ Tuples in the corresponding same buckets just need to
be compared with one another and not with all the other
tuples Iin the other buckets

CS 377 [Spring 2016] - Ho

Example: Hash-Join

|
(EEE-

Step 1: Use hash function to partition
iInto B buckets

CS 377 [Spring 2016] - Ho

Example: Hash-Join (2)

Disk

Disk

Step 2: Join matching buckets

CS 377 [Spring 2016] - Ho

Hash-Join Algorithm

- Partitioning phase

- 1 block for reading and M-1 blocks for hashed
partitions

- Hash R tuples into k buckets (partitions)
- Hash S tuples into k buckets (partitions)
- Joining phase (nested block join for each pair of partitions)

- M-2 blocks for R partition, 1 block for S partition

CS 377 [Spring 2016] - Ho

Hash-Join Algorithm

- Hash function h and the number of buckets are chosen
such that each bucket should fit in memory

- Recursive partitioning required if number of buckets is
greater than number of pages M of memory

- Hash-table overflow occurs it each bucket does not fit In
Mmemory

CS 377 [Spring 2016] - Ho

Hash-Join Cost

- If recursive partitioning Is not required:
- Partitioning phase: 2br + 20s
- Joining phase: br + bs
- Jotal: 3br + 3bs

- If recursive partitioning is required:

- Number of passes required to partition: [loga,_1(bs) — 1]

- Jotal cost: 2(br + bg)|log,_1(bs) — 1| 4+ br + bs

CS 377 [Spring 2016] - Ho

Example: Hash-Join

- Assume memory size is 20 blocks
- What is cost of joining customer and depositor”?

- Since depositor has less total blocks, we will use it to
partition into 5 buckets, each of size 20 blocks

-+ Customer is also partitioned into 5 buckets, each of size
80 blocks

- Total cost: 3(100 + 400) = 1500 block transfers

CS 377 [Spring 2016] - Ho

Hybrid Hash-Join

- Useful when memory sizes are relatively large and the
smallest relation is bigger than memory

- |dea: Keep first partition in memory to avoid disk |/O for
reading and writing the first block

- Assume we
olocks (com

nave a sl

nared to

oartition of depositor

ightly larger memory size of 25

orevious example) - keep the first

iINn memory (20 blocks)

-+ Cost: 3(80 + 320) + 20 + 80 = 1300 block transfers

CS 377 [Spring 2016] - Ho

Hash Join vs Sorted Join

- Sorted join advantages
- Good If input Is already sorted, or need output to be sorted
- Not sensitive to data skew or bad hash functions

-+ Hash join advantages
+ Can be cheaper due to hybrid hashing

- Dependent on size of smaller relation — good for different relation
Sizes

- Good if input already hashed or need output hashed

CS 377 [Spring 2016] - Ho

Complex Join

- What about joins with conjunctive (AND) conditions?
- Compute the result of one of the simpler joins

- Final result consists of tuples In intermediate results
that satisfy remaining conditions

- lest these conditions as tuples are generated
- What about joins with disjunctive (OR) conditions?

- Compute as the union of the records in individual joins

CS 377 [Spring 2016] - Ho

Example: Complex Join

What if we did a join on loan, depositor, and customer??

- Strategy 1: Compute depositor joins customer and
then use that to compute the join with loans

- Strategy 2: Compute loan joins depositor first then use
that to join with customer

CS 377 [Spring 2016] - Ho

Example: Complex Join (2)

What if we did a join on loan, depositor, and customer??

- Strategy 3: Perform pair of joins at once, build an index
on loan for [ID and on customer for cname

-+ For each tuple t in depositor, lookup corresponding
tuples In customer and corresponding tuples in loan

- Each tuple of depositor is examined exactly once

CS 377 [Spring 2016] - Ho

PROJECT Algorithms

- Extract all tuples from R with only attributes in attribute
list of projection operator & remove tuples

- By default, SQL does not remove duplicates (unless
DISTINCT keyword is included)

- Duplicate elimination
- Sorting

+ Hashing (duplicates in same bucket)

CS 377 [Spring 2016] - Ho

Aggregation Algorithms

Similar to duplicate elimination
+ Sort or hash to group same tuples together

- Apply aggregate functions to each group

CS 377 [Spring 2016] - Ho

Set Operation Algorithms

- CARTESIAN PRODUCT

+ Nested loop - expensive and should avoid if possible
- UNION, INTERSECTION, SET DIFFERENCE

- Sort-merge

+ Hashing

CS 377 [Spring 2016] - Ho

Query Processing Recap

Optimized
RA Plan
> . RA Plan
Declarative Translate to RA Find logically Select physical
user query expression equivalent but algorithm with
more efficient RA lowest |O cost to
expression execute the plan

CS 377 [Spring 2016] - Ho

DBMS’s Query Execution Plan

- Most commercial RDBMS can produce the query
optimizer’s execution plan to try to understand the
decision made by the optimizer

- Common syntax is EXPLAIN <SQL query> (used by
MySQL)

- Good DBAs (database administrators) understand query
optimizers VERY WELL!

CS 377 [Spring 2016] - Ho

Why Should | Care”

- If query runs slower than expected, check the plan — DBMS
may not be executing a plan you had in mind

- Selections involving null values

+ Selections involving arithmetic or string operations
- Complex subqgueries

+ Selections involving OR conditions

- Determine if you should build another index, or if index needs
to be re-clustered or If statistics are too old

CS 377 [Spring 2016] - Ho

Query Tuning Guidelines

- Minimize the use of DISTINCT — don’t need if duplicates are
acceptable or if answer already has a key

-+ Minimize use of GROUP BY and HAVING
+ Consider DBMS use of index when using math
- E.age = 2 " D.age might only match index on E.age

- Consider using temporary tables to avoid “double-dipping”
iNnto a large table

+ Avoid negative searches (can’t utilize indexes)

CS 377 [Spring 2016] - Ho

Query Optimization: Recap

- External sort-merge
- JOIN algorithms
- Nested loop join
- Nested-block join
- Indexed nested-loop join
- Sort-merge join

-+ Hash-join

+ Other operation algorithms (PROJECT, SET, Aggregate)

CS 377 [Spring 2016] - Ho

