
Query Optimization: Sorting &
Joining
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

Recap: Query Processing
• Some database

operations are expensive

• Performance can be
improved by being “smart”

• RA expressions can be
optimized via heuristics

• Cost-based optimization
to determine “best” query
plan

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

Figure 12.1 from Database System Concepts book

CS 377 [Spring 2016] - Ho

Example: SQL Query Step 1
Step 1: Convert SQL query into a parse tree

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

Example: SQL Query Step 2
Step 2: Convert parse tree into initial logical query plan
using RA expression

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

Example: SQL Query Step 3
Step 3: Transform initial plan into optimal query plan using
some measure of cost to determine which plan is better

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

Example: SQL Query Step 4
Step 4: Select physical query operator for each relational
algebra operator in the optimal query plan

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

Recap: Catalog Information
Database maintains statistics about each relation

• Size of file: number of tuples [nr], number of blocks [br], tuple
size [sr], number of tuples or records per block [fr], etc.

• Information about indexes and indexing attributes

• Attribute values - number of distinct values [V(att, r)]

• Selection cardinality - expected size of selection given value
[SC(att, r)]

• …

CS 377 [Spring 2016] - Ho

Recap: Cost-based Optimization
SELECT algorithms

• Linear search

• Binary search

• Index search

Different costs depending on the file
organization and indexes

CS 377 [Spring 2016] - Ho

Sorting
• One of the primary algorithms used for query processing

• ORDER BY

• DISTINCT

• JOIN

• Relations that fit in memory — use techniques like
quicksort, merge sort, bubble sort

• Relations that don’t fit in memory — external sort-merge

CS 377 [Spring 2016] - Ho

External Sort-Merge Algorithm
• Problem: Sort r records, stored in b file blocks with a total

memory space of M blocks

• Create sorted runs with i = 0

• Read M blocks of relation into memory

• Sort the in-memory blocks

• Write sorted data to run Ri, increment i

CS 377 [Spring 2016] - Ho

External Sort-Merge Algorithm (2)
• Merge the sorted runs: merge subfiles until 1 remains

• Select the first record in sort order from each of the
buffers

• Write the record to the output

• Delete the record from the buffer page, and read the
next block if empty

• Total cost: br(2dlogM�1(br/M)e+ 1)

CS 377 [Spring 2016] - Ho

Example: External Merge Sort

Figure 12.4 from Database System Concepts book

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

initial
relation

create

24
19Sort fragments of

file in memory
using internal sort

— where each
run size is the

size of the block

For this example,
use block size =

3 tuples

run 1

run 2

run 3

run 4

CS 377 [Spring 2016] - Ho

Example: External Merge Sort (2)

Figure 12.4 from Database System Concepts book

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

runs runs

24
19

Once each run is
sorted, we will

merge two runs
together at a time

merge 1

merge 2

CS 377 [Spring 2016] - Ho

Example: External Merge Sort (3)

Figure 12.4 from Database System Concepts book

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs

24
19

Another layer of
sorted runs, so
again merge 2

runs at a time…

CS 377 [Spring 2016] - Ho

Example: External Merge Sort (4)

Figure 12.4 from Database System Concepts book

g
a
d 31
c 33
b 14
e 16
r 16
d 21
m 3
p 2
d 7
a 14

a 14
a 19
b 14
c 33
d 7
d 21
d 31
e 16
g 24
m 3
p 2
r 16

a 19
b 14
c 33
d 31
e 16
g 24

a 14
d 7
d 21
m 3
p 2
r 16

a 19
d 31
g 24

b 14
c 33
e 16

d 21
m 3
r 16

a 14
d 7
p 2

initial
relation

create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24
19

CS 377 [Spring 2016] - Ho

JOIN
• One of the most time-consuming operations

• EQUIJOIN & NATURAL JOIN varieties are most
prominent — focus on algorithms for these

• Two way join: join on two files

• Multi-way joins: joins involving more than two files

CS 377 [Spring 2016] - Ho

JOIN Performance
Factors that affect performance

• Tuples of relation stored physically together

• Relations sorted by join attribute

• Existence of indexes

CS 377 [Spring 2016] - Ho

JOIN Algorithms
• Several different algorithms to implement joins

• Nested loop join

• Nested-block join

• Indexed nested loop join

• Sort-merge join

• Hash-join

• Choice is based on cost estimate

CS 377 [Spring 2016] - Ho

Example: Bank Schema
• Join depositor and customer tables

• Catalog information for both relations:

• ncustomer = 10000

• fcustomer = 25 => bcustomer = 10000/25 = 400

• ndepositor = 5000

• fdepositor = 50 => bdepositor = 5000/50 = 100

• V(cname, depositor) = 2500 (each customer on average has 2 accounts)

• Cname in depositor is a foreign key of customer

CS 377 [Spring 2016] - Ho

Cardinality of Join Queries
• Cartesian product or two relations R x S contains nR * nS

tuples with each tuple occupying sR + sS bytes

• If , then is the same as

• If is a key in R, then a tuple of s will join with one
tuple from R => the number of tuples in the join will be no
greater than the number of tuples in S

• If is a foreign key in S referencing R, then the
number of tuples is exactly the same number as S

R \ S = ; R ./ S R⇥ S

R \ S

R \ S

CS 377 [Spring 2016] - Ho

Cardinality of Join Queries (2)
• If and A is not a key of R or S there are two

estimates that can be used

• Assume every tuple in R produces tuples in the join,
number of tuples estimated: 

• Assume every tuple in S produces tuples in the join,
number of tuples estimated: 

• Lower of two estimates is probably more accurate

R \ S = {A}

nR ⇤ ns

V (A, s)

nR ⇤ ns

V (A, r)

CS 377 [Spring 2016] - Ho

Example: Cardinality of Join
• Estimate the size of

• Assuming no foreign key:

• V(cname, depositor) = 2500 =>  
5000 * 10000 / 2500 = 20,000

• V(cname, customer) = 10000 => 
5000 * 10000 / 10000 = 5000

• Since cname in depositor is foreign key of customer, the
size is exactly ndepositor = 5000

Depositor ./ Customer

CS 377 [Spring 2016] - Ho

Nested Loop Join
• Default (brute force) algorithm

• Requires no indices and can be used with any join
condition

• Algorithm: 
for each tuple tr in r do 
 for each tuple ts in s do 
 test pair (tr, ts) to see if condition satisfied  
 if satisfied, output (tr, ts) pair

• R is the outer relation and S is the inner relation

CS 377 [Spring 2016] - Ho

Nested Loop Join Cost
• Expensive as it examines every pair of tuples in the two

relations

• If smaller relation fits entirely in main memory, use that
relation as inner relation

• Worst case: only enough memory to hold one block of
each relation, estimated cost is nr * bs + br

• Best case: smaller relation fits in memory, estimated cost
is br + bs disk access

CS 377 [Spring 2016] - Ho

Example: Nested Loop Join
• Worst case memory scenario:

• Depositor as outer relation: 5000 * 400 + 1000 =
2,000,100 I/Os

• Customer as outer relation: 10000 * 100 + 400 =
1,000,400 I/Os

• Best case memory scenario (depositor fits in memory)

• 100 + 400 = 500 I/Os

CS 377 [Spring 2016] - Ho

Nested-Block Join
• Instead of individual tuple basis, join one block at a time together

• Algorithm: 
for each block in r do 
 for each block in s do 
 use nested loop join algorithm on blocks  
 to output matching pairs

• Worst case: each block in the inner relation s is only read once
for each block in the outer relation, so estimated cost is br * bs +
br

• Best case: same as nested loop with cost br + bs

CS 377 [Spring 2016] - Ho

Nested-Block vs Nested Loop Join
Assume worst memory case

• Nested loop join with depositor as inner relation: 10000 *
100 + 400 = 1,000,400 I/Os

• Nested-block join with depositor as inner relation: 400 *
100 + 400 = 40400 I/Os

What if a disk speed is 360K I/Os per hour?

• Nested loop join ~= 2.78 hours

• Nested-block join ~= 0.11 hours

A very small change
can make a huge

difference in speed!

CS 377 [Spring 2016] - Ho

Indexed Nested-Loop Join
• Index is available on inner loop’s join attribute — use index to

compute the join

• Algorithm:  
for each tuple tr in r do  
 retrieve tuples from s using index search

• Worst case: buffer only has space for one page of r and one
page of index, estimated cost is br + nr * c (c is cost of single
selection on s using join condition)

• If indices available on both relations, use one with fewer
tuples as outer relation

CS 377 [Spring 2016] - Ho

Example: Index Nested Loop Join
• Assume customer has primary B+-tree index on customer

name, which contains 20 entries in each node

• Since customer has 10,000 tuples, height of tree is 4

• Using depositor as outer relation, estimated cost: 100 +
5000 * (4 + 1) = 25,100 disk accesses

• Block nested-loop join cost: 100 * 400 + 100 = 40,100 I/Os

• Cost is lower with index nested loop than block nested-loop
join

CS 377 [Spring 2016] - Ho

Sort-Merge Join
• Sort the relations based on the join

attributes (if not already sorted)

• Merge similar to the external sort-
merge algorithm with the main
difference in handling duplicate
values in the join attribute — every
pair with same value on join
attribute must be matched

a 3
b 1
d 8

13d
f 7

m 5
q 6

a A
b G
c L
d N
m B

a1 a2 a1 a3
pr ps

r

s

Figure 12.8 from Database System
Concepts book

CS 377 [Spring 2016] - Ho

Sort-Merge Join (2)
• Can only be used for equijoins and natural joins

• Each tuple needs to be read only once, and as a result,
each block is also read only once  
cost = sorting cost + br + bs

• If one relation is sorted, and other has secondary B+-tree
index on join attribute, hybrid merge-joins are possible

CS 377 [Spring 2016] - Ho

Hash-Join
• Applicable for equijoins and natural joins

• A hash function, h, is used to partition tuples of both
relations into sets that have same hash value on the join
attributes

• Tuples in the corresponding same buckets just need to
be compared with one another and not with all the other
tuples in the other buckets

CS 377 [Spring 2016] - Ho

Example: Hash-Join

Disk

R

S

(3,j) !
(0,j) !

(0,a) !
(0,a) !

(3,b) !
!

(5,b) !
!

(0,a) !
(0,j) !

Disk

R1

S1

S2

R2

(0,a) !
(0,a) !

(0,j) !
!

(3,j) !
(3,b) !

(0,a) !
(0,j) !

(5,b) !
!

(5,b) !
!

Step 1: Use hash function to partition
into B buckets

CS 377 [Spring 2016] - Ho

Example: Hash-Join (2)

Disk

R

S

(3,j) !
(0,j) !

(0,a) !
(0,a) !

(3,b) !
!

(5,b) !
!

(0,a) !
(0,j) !

Disk

R1

S1

S2

R2

(0,a) !
(0,a) !

(0,j) !
!

(3,j) !
(3,b) !

(0,a) !
(0,j) !

(5,b) !
!

(5,b) !
!

Step 2: Join matching buckets

CS 377 [Spring 2016] - Ho

Hash-Join Algorithm
• Partitioning phase

• 1 block for reading and M-1 blocks for hashed
partitions

• Hash R tuples into k buckets (partitions)

• Hash S tuples into k buckets (partitions)

• Joining phase (nested block join for each pair of partitions)

• M-2 blocks for R partition, 1 block for S partition

CS 377 [Spring 2016] - Ho

Hash-Join Algorithm
• Hash function h and the number of buckets are chosen

such that each bucket should fit in memory

• Recursive partitioning required if number of buckets is
greater than number of pages M of memory

• Hash-table overflow occurs if each bucket does not fit in
memory

CS 377 [Spring 2016] - Ho

Hash-Join Cost
• If recursive partitioning is not required:

• Partitioning phase: 2bR + 2bS

• Joining phase: bR + bS

• Total: 3bR + 3bS

• If recursive partitioning is required:

• Number of passes required to partition:

• Total cost:
2(bR + bS)dlogM�1(bS)� 1e+ bR + bS

dlogM�1(bS)� 1e

CS 377 [Spring 2016] - Ho

Example: Hash-Join
• Assume memory size is 20 blocks

• What is cost of joining customer and depositor?

• Since depositor has less total blocks, we will use it to
partition into 5 buckets, each of size 20 blocks

• Customer is also partitioned into 5 buckets, each of size
80 blocks

• Total cost: 3(100 + 400) = 1500 block transfers

CS 377 [Spring 2016] - Ho

Hybrid Hash-Join
• Useful when memory sizes are relatively large and the

smallest relation is bigger than memory

• Idea: Keep first partition in memory to avoid disk I/O for
reading and writing the first block

• Assume we have a slightly larger memory size of 25
blocks (compared to previous example) - keep the first
partition of depositor in memory (20 blocks)

• Cost: 3(80 + 320) + 20 + 80 = 1300 block transfers

CS 377 [Spring 2016] - Ho

Hash Join vs Sorted Join
• Sorted join advantages

• Good if input is already sorted, or need output to be sorted

• Not sensitive to data skew or bad hash functions

• Hash join advantages

• Can be cheaper due to hybrid hashing

• Dependent on size of smaller relation — good for different relation
sizes

• Good if input already hashed or need output hashed

CS 377 [Spring 2016] - Ho

Complex Join
• What about joins with conjunctive (AND) conditions?

• Compute the result of one of the simpler joins

• Final result consists of tuples in intermediate results
that satisfy remaining conditions

• Test these conditions as tuples are generated

• What about joins with disjunctive (OR) conditions?

• Compute as the union of the records in individual joins

CS 377 [Spring 2016] - Ho

Example: Complex Join
What if we did a join on loan, depositor, and customer?

• Strategy 1: Compute depositor joins customer and
then use that to compute the join with loans

• Strategy 2: Compute loan joins depositor first then use
that to join with customer

CS 377 [Spring 2016] - Ho

Example: Complex Join (2)
What if we did a join on loan, depositor, and customer?

• Strategy 3: Perform pair of joins at once, build an index
on loan for lID and on customer for cname

• For each tuple t in depositor, lookup corresponding
tuples in customer and corresponding tuples in loan

• Each tuple of depositor is examined exactly once

CS 377 [Spring 2016] - Ho

PROJECT Algorithms
• Extract all tuples from R with only attributes in attribute

list of projection operator & remove tuples

• By default, SQL does not remove duplicates (unless
DISTINCT keyword is included)

• Duplicate elimination

• Sorting

• Hashing (duplicates in same bucket)

CS 377 [Spring 2016] - Ho

Aggregation Algorithms
Similar to duplicate elimination

• Sort or hash to group same tuples together

• Apply aggregate functions to each group

CS 377 [Spring 2016] - Ho

Set Operation Algorithms
• CARTESIAN PRODUCT

• Nested loop - expensive and should avoid if possible

• UNION, INTERSECTION, SET DIFFERENCE

• Sort-merge

• Hashing

CS 377 [Spring 2016] - Ho

Query Processing Recap

SQL Query RA Plan Optimized
RA Plan Execution

Declarative
user query

Translate to RA
expression

Find logically
equivalent but

more efficient RA
expression

Select physical
algorithm with

lowest IO cost to
execute the plan

CS 377 [Spring 2016] - Ho

DBMS’s Query Execution Plan
• Most commercial RDBMS can produce the query

optimizer’s execution plan to try to understand the
decision made by the optimizer

• Common syntax is EXPLAIN <SQL query> (used by
MySQL)

• Good DBAs (database administrators) understand query
optimizers VERY WELL!

CS 377 [Spring 2016] - Ho

Why Should I Care?
• If query runs slower than expected, check the plan — DBMS

may not be executing a plan you had in mind

• Selections involving null values

• Selections involving arithmetic or string operations

• Complex subqueries

• Selections involving OR conditions

• Determine if you should build another index, or if index needs
to be re-clustered or if statistics are too old

CS 377 [Spring 2016] - Ho

Query Tuning Guidelines
• Minimize the use of DISTINCT — don’t need if duplicates are

acceptable or if answer already has a key

• Minimize use of GROUP BY and HAVING

• Consider DBMS use of index when using math

• E.age = 2 * D.age might only match index on E.age

• Consider using temporary tables to avoid “double-dipping”
into a large table

• Avoid negative searches (can’t utilize indexes)

CS 377 [Spring 2016] - Ho

Query Optimization: Recap
• External sort-merge

• JOIN algorithms

• Nested loop join

• Nested-block join

• Indexed nested-loop join

• Sort-merge join

• Hash-join

• Other operation algorithms (PROJECT, SET, Aggregate)

