Query Processing & Optimization

CS 377: Database Systems



Recap: File Organization & Indexing

- Physical level support for data retrieval

- File organization: ordered or sequential file to find items
using binary search

- |Index: data structures to help with some query evaluation
(selection & range queries)

- Indexes may not always be useful even for selection queries

- What about join queries and other queries not supported by
indices”?

CS 377 [Spring 2016] - Ho



Query Processing Introduction

- Some database operations are expensive

- Performance can be improved by being “smart”
- Clever implementation techniques for operators
- Exploiting “equivalences” of relational operators

Jsing statistics and cost models to choose better
olans

CS 377 [Spring 2016] - Ho



Basic Steps in Query Processing

Parse and translate:
convert to RA query

Optimize RA query
pased on the different
nossible plans

—valuate the execution
nlan to obtain the
guery results

query |

query
output

parser and relational-algebra
translator expression

 execution plan
data statistics

about data

Figure 12.1 from Database System Concepts book

CS 377 [Spring 2016] - Ho



Query Processing Overview

parser and relational-algebra
query .
translator expression

WHY?

SQL DA
A declarative
expression of the Codd’s

query result theorem

Say what you want, Systems optimize and execute
not how to get it! RA query plan!

CS 377 [Spring 2016] - Ho

Operational description
of a computation



Example: SQL Query

Find movies with stars born in 1960

SELECT movieTitle

FROM Starsin, MovieStar
WHERE starName = name
AND birthdate LIKE ‘%1960’;

CS 377 [Spring 2016] - Ho



Example: Bad Query Optimization

- Cartesian product first:
Starsin x MovieStar

- Selection criteria next:
starname = name AND birthdate LIKE ‘%1960’

. GROUP BY: HAVING (if available)

+ Projections

SELECT movietitle Incredibly inefficient with huge

INntermediate results!
- ORDER BY last

CS 377 [Spring 2016] - Ho



Example: SQL Query Step 1

Step 1: Convert SQL query into a parse tree

SELECT movleTltle
FROM Starsin , MovleStar
WHERE starName = name

AND Dblrthdate LIKE '%1960°

v

<Query

SELECT <Selllst> FROM <FromLlst> WHERE <Condx>

7\ /N

<Attribute> <RelName» , <FromLlIst> <Condx AND <Cond>
movlieTltle Starsin <RelName> cAttr> =<Attr> <cAttr> LIKE <Pattern=
MovleStar starName name  blrthdate "% 1960"

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html
CS 377 [Spring 2016] - Ho


http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

Example: SQL Query Step 2

Step 2: Convert parse tree into initial logical query plan
using RA expression

T

O starName = name
birthdate LIKE "%1960°

|
X

N

MovlaStar Starsin

movieTltle

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho


http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

Example: SQL Query Step 3

Step 3: Transform initial plan into optimal query plan using
some measure of cost to determine which plan is better

T

"movleTltle T
| movleTitle
0] starName = name N
birthdate LIKE "% 1960° starName =hame
X Gblrthdate MovileStar
LIKE
/ \ *%1960"
MovleStar Starsin Starsin
Swapped !
Initlal Query Plan Optimal Query Plan

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho


http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

Example: SQL Query Step 4

Step 4: Select physical query operator for each relational
algebra operator in the optimal query plan

One passTl
Tl:mo'.erTItle
‘ Index-Jom
N Index on name
starName =name
/ — blrthdate
G \ Filter ( LIKE MovlaeStar

birthdate MovlaStar 02 1960"

LIKE

*%1960"

Starsin TableScan(starsin)

Physlcal Query Plan
Optimal Loglcal Query Plan ¥ ¥

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho


http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

Recap: Relational Algebra

relational algebra

set operations relational database set functions
* specific operations *
) set union () sdection sum
t intersecti jecti ave
set in on rojection
) U prol count
set difference N join any
max
X cartesian product % set division min

CS 377 [Spring 2016] - Ho



Recap: SQL Query to RA

- How do you represent queries in RA?

-+ Database: Students(sid, sname, gpa)
People(ssn, pname, address)

- SQL query:
SELECT DISTINCT gpa, address
FROM  Students, People
WHERE gpa > 3.5 AND sname = pname;

- RA query:

Tgpa,address (nga>3.5 (Students >sname=name People))

CS 377 [Spring 2016] - Ho



Query Tree (Plan)

- A tree data structure that corresponds to
a relational algebra expression

Leaf nodes = input relations T movieTitle

G starName = name
birthdate LIKE '%1960"

Internal nodes = RA operations

Execution of query tree ‘

X
7N

Execute internal node whenever its =~ Moviestar Starsin
operands are available and replace
node by result

- Start at the leaf nodes

CS 377 [Spring 2016] - Ho



Query Optimization Heuristics

- Apply heuristic rules on standard initial query tree to find
optimized equivalent query tree

- Main heuristic: Favor operations that reduce the size of
iIntermediate results first

- Apply SELECT and PROJECT operations before join or
other set operations

- Apply more selective SELECT and join first

-+ General transformation rules for relational algebra operators

CS 377 [Spring 2016] - Ho



RA Transformation Rules

+ Selection cascade: conjunctive selection condition can be
broken into sequence of individual operations

Oc1 AND c2 AND ---AND CD(R) — O¢1 (0-02(° e (UCH(R)) "t ))

- Commutativity of selection

0c1(0c2(R)) = 0c2(0c1(R))
- Cascade of projection: ignore all but the last one

Ta(ma,B(R)) = ma(R)

- Commuting selection and projection: If the selection condition
c involves only attributes in the projection list commute the two

A B(0c(R)) = oc(ma. B(R))

CS 377 [Spring 2016] - Ho



RA Transformation Rules (2)

- Commutativity of joins, cartesian product, union, intersection
ROS=S50R
- Associativity of join, cartesian product, union, intersection
(ROS)OT=RO(SOT)

- Selection and join: if attributes In the selection condition
involves only attributes of one of the relations being joined

og.(R<tS)=0.(R) =< S

g.(R<1S) = 0.1 (R) ™ 0.5(S5)

CS 377 [Spring 2016] - Ho



RA Transformation Rules (3)

- Commuting projection with join: if join condition involves
only attributes Iin the projection list, commute the
operations

mL(R > S) = (mr1(R)) e (712(5))

- Commuting selection with intersection, union, or
difference

0c(R 0 5) = (0:(R)) 0 (0c(95))

- Several others in the book...

CS 377 [Spring 2016] - Ho



Query Optimization Heuristic Algorithm

-+ Break up any select operations with conjunctive conditions into cascade
of select operations and move select operations as far down query tree
as permitted

- Rearrange leaf nodes so leaf nodes with most restrictive select
operations are executed first

- Combine cartesian product operation with a subsequent selection
operation into join operation

- Break down and move lists of projection attributes down the tree as far
as possible

- |dentity subtrees that represent group of operations that can lbe executed
as a single algorithm

CS 377 [Spring 2016] - Ho



Example: SQL Query Optimization

SELECT Iname

FROM employee, works_on, project

WHERE pname = ‘Aguarius’ and pnumber = pno
AND bdate > *1957-12-31";

N Initial query tree

T
Lname

9 Pname='Aquarius’ AND Pnumber=Pno AND Essn=Ssn AND Bdate>'1957-12-31’

CS 377 [Spring 2016] - Ho



Example: SQL Query Optimization (2)

Move SELECT operations down the query tree

T
Lname

9 Pname="Aquarius’ AND Pnumber=Pno AND Essn=Ssn AND Bdate>'1957-12-31’

“B4 te>19571231 ;

CS 377 [Spring 2016] - Ho



Example: SQL Query Optimization (3)

Apply more restrictive SELECT first (left most side of tree)

T
Lname

Y Phumber=Pno

T
X (PROJECT > |
/ O Essn=Ssn
“Bdate>*1957-12-31’ (CWORKS_ON > )|(

CS 377 [Spring 2016] - Ho



Example: SQL Query Optimization (4)

Replace cartesian product and select with join

TN

O Pnumbe r—P 0Bdt>19571231

TLname
“Pname= Aq |
b4
Essn=Ssn

/\

P umber=Pno Bdate>'1957-12-31'

CS 377 [Spring 2016] - Ho



Example: SQL Query Optimization (5)

Move projections down the tree

TLname

. Essn=Ssn

/\

Pn mber—Pno 9 Bdate>'1957-12-31"

M Essn=Ssn
T Essn T Ssn, Lname
& Pnumber=Pno ,

/ \ “Bdate>'1957-12-31
M e
¢ Pname='Aquarius’

CS 377 [Spring 2016] - Ho



Query Optimization

- Logical level: heuristics based optimization to find a
better RA query tree

- SQL query —> initial logical query tree —> optimized
query tree

- Physical level: cost-based optimization to determine
“best” query plan

- Optimized query tree —> query execution plans —>
cost estimation —> “best” query plan

CS 377 [Spring 2016] - Ho



Cost-based Query Optimization

Estimate and compare the costs of executing a query using
different execution strategies and choose the strategy with the
lowest cost estimate

+ Disk I/0O cost

+ Storage cost

- Computation cost

- Memory usage cost

- Communication cost (distributed datalbases)

CS 377 [Spring 2016] - Ho



Catalog Information

Database maintains statistics about each relation

- Size of file: number of tuples [n], number of blocks [b/], tuple
size [s¢], numlber of tuples or records per block [fi], etc.

- Information about indexes and indexing attributes
- Attribute values - number of distinct values [V(att, r)]

+ Selection cardinality - expected size of selection given value
[SC(att, r)]

CS 377 [Spring 2016] - Ho



Catalog Information for Index

- Average fan-out of internal nodes of index | for tree-
structured indices [f]

- Number of levels in index i (i.e., height of index i) [HT]]
- Balanced tree on attribute A of relation r: [logs, V(A,7)]

- Hash index: 1

- Number of lowest-level index blocks in i (i.e., number of
blocks at the leaf level of the index) [LB]]

CS 377 [Spring 2016] - Ho



Example: Bank Schema

Account relation

‘ faccount — 20 (20 tup|eS per blOCk)
- V(bname, account) = 50 (50 branches)

- V(balance, account) = 500 (500 different balance
values)

* Naccount = 10000 (10,000 tuples in account)

° baocount — 10000 / 20 - 500

CS 377 [Spring 2016] - Ho



SELECT Algorithms (Simple)

- Linear search (brute force): selection attribute is not
ordered and no index on attribute

- Cost: # blocks in relation = by
+ Reserves example: 500 |/Os

- Binary search: selection attribute Is ordered and no index

- Cost: [logy(b,)] + [SCatt, 1)/f,] —1
N—— —— N———— —
locating first tuple  # blocks with selection

CS 377 [Spring 2016] - Ho



Example: Binary search

- How expensive Is the following query If we assume
Account is sorted by branch name”?

Obname="‘Perryridge’ (ACCOunt)

- Ans:

- # of tuples Iin the relation pertaining to Perryridge is total
number of tuples divided by distinct values: 10000/50

- Cost: [log,(500)] + [200/20] —1 =18

CS 377 [Spring 2016] - Ho



SELECT Algorithms (Simple w/ Index)

- Index search: cost depends on the numlber of qualifying
tuples, cost of retrieving the tuples and the type of query

+ Primary index
- Equality search on candidate key: HTi + 1
- Equality search on nonkey: HT; 4+ [SC(att, r)/ f,|

- Comparison search: HT; + [c/f.]

estimated number of tuples that satisfy condition

CS 377 [Spring 2016] - Ho



SELECT Algorithms (Simple w/ Index)

-+ Secondary index
- Equality search on candidate key: HT; + 1
- Equality search on nonkey: HT; + SC(att, r)
- Comparison search: HTi+ LBi*¢c/nr+ C
Note that linear file scan maybe

cheaper If the number of tuples
satisfying the condition is large!

CS 377 [Spring 2016] - Ho



Example: Index search

- How expensive is the following query if we assume primary
index on branch name”

Obname="‘Perryridge’ (ACCOunt)

- Ans:
-+ 200 tuples relating to Perryridge branch => clustered index
- Assume B™-tree index stores 20 pointers per node, then
iIndex must have between 3 and 5 leaf nodes with a depth

of 2

. Cost: 2+ [200/20] = 12

CS 377 [Spring 2016] - Ho



SELECT Algorithms (Complex)

- Conjunctive selection (several conditions with AND)

- Single index: retrieve records satisfying some attribute condition
(with index) and check remaining conditions

- Composite index
- Intersection of multiple indexes
- Disjunctive selection (several conditions with OR)

- Index/binary search if all conditions have access path and take union

- Linear search otherwise

CS 377 [Spring 2016] - Ho



Example: Complex search

- How expensive if we want to find accounts where the branch name
IS Perryridge with a balance of 1200 if we assume there is a primary
iINndex on branch name and secondary on balance”?

- Ans for using one index:
- Cost for branch name: 12 block reads

-+ Balance index is not clustered, so expected selection is 10,000 /
500 = 20 accounts

- Cost for balance: 2 + 20 = 22 block reads

- Thus use branch name index, even If it Is less selective!

CS 377 [Spring 2016] - Ho



Example: Complex search (2)

+ Ans for using intersection of two indexes:
-+ Use index on balance to retrieve set of S1 pointers: 2 reads

+ Use index on branch name to retrieve set of S2 pointers: 2
reads

- Take Intersection of the two

- Estimate 1 tuple in 50 * 500 meets both conditions, so we
estimate the intersection of two has one pointer

- Estimated cost: 5 block reads

CS 377 [Spring 2016] - Ho



Query Processing & Optimization: Recap

+ Motivation for query optimization
- Query parse tree
- Query optimization heuristics
- RA transtformation rules
- Cost-based query optimization

- SELECT

CS 377 [Spring 2016] - Ho



