
Query Processing & Optimization
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

Recap: File Organization & Indexing
• Physical level support for data retrieval

• File organization: ordered or sequential file to find items
using binary search

• Index: data structures to help with some query evaluation
(selection & range queries)

• Indexes may not always be useful even for selection queries

• What about join queries and other queries not supported by
indices?

CS 377 [Spring 2016] - Ho

Query Processing Introduction
• Some database operations are expensive

• Performance can be improved by being “smart”

• Clever implementation techniques for operators

• Exploiting “equivalences” of relational operators

• Using statistics and cost models to choose better
plans

CS 377 [Spring 2016] - Ho

Basic Steps in Query Processing
• Parse and translate:

convert to RA query

• Optimize RA query
based on the different
possible plans

• Evaluate the execution
plan to obtain the
query results

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

Figure 12.1 from Database System Concepts book

CS 377 [Spring 2016] - Ho

Query Processing Overview

query parser and
translator

relational-algebra
expression

SQL 
 

A declarative
expression of the

query result

RA 
 

Operational description
of a computation

WHY?

Systems optimize and execute
RA query plan!

Say what you want,
not how to get it!

Codd’s
theorem

CS 377 [Spring 2016] - Ho

Example: SQL Query
Find movies with stars born in 1960

SELECT movieTitle  
FROM StarsIn, MovieStar  
WHERE starName = name 
AND birthdate LIKE ‘%1960’;

CS 377 [Spring 2016] - Ho

Example: Bad Query Optimization
• Cartesian product first: 

StarsIn x MovieStar

• Selection criteria next: 
starname = name AND birthdate LIKE ‘%1960’

• GROUP BY; HAVING (if available)

• Projections 
SELECT movietitle

• ORDER BY last

Incredibly inefficient with huge
intermediate results!

CS 377 [Spring 2016] - Ho

Example: SQL Query Step 1
Step 1: Convert SQL query into a parse tree

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

Example: SQL Query Step 2
Step 2: Convert parse tree into initial logical query plan
using RA expression

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

Example: SQL Query Step 3
Step 3: Transform initial plan into optimal query plan using
some measure of cost to determine which plan is better

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

Example: SQL Query Step 4
Step 4: Select physical query operator for each relational
algebra operator in the optimal query plan

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/5-query-opt/intro.html

CS 377 [Spring 2016] - Ho

Recap: Relational Algebra

CS 377 [Spring 2016] - Ho

Recap: SQL Query to RA
• How do you represent queries in RA?

• Database: Students(sid, sname, gpa) 
 People(ssn, pname, address)

• SQL query: 
SELECT DISTINCT gpa, address  
FROM Students, People  
WHERE gpa > 3.5 AND sname = pname;

• RA query:
⇡gpa,address(�gpa>3.5(Students ./sname=name People))

CS 377 [Spring 2016] - Ho

Query Tree (Plan)
• A tree data structure that corresponds to

a relational algebra expression

• Leaf nodes = input relations

• Internal nodes = RA operations

• Execution of query tree

• Start at the leaf nodes

• Execute internal node whenever its
operands are available and replace
node by result

CS 377 [Spring 2016] - Ho

Query Optimization Heuristics
• Apply heuristic rules on standard initial query tree to find

optimized equivalent query tree

• Main heuristic: Favor operations that reduce the size of
intermediate results first

• Apply SELECT and PROJECT operations before join or
other set operations

• Apply more selective SELECT and join first

• General transformation rules for relational algebra operators

CS 377 [Spring 2016] - Ho

RA Transformation Rules
• Selection cascade: conjunctive selection condition can be

broken into sequence of individual operations 

• Commutativity of selection  

• Cascade of projection: ignore all but the last one  

• Commuting selection and projection: if the selection condition
c involves only attributes in the projection list commute the two 

�c1 AND c2 AND ···AND cn(R) = �c1(�c2(· · · (�cn(R)) · · ·))

�c1(�c2(R)) = �c2(�c1(R))

⇡A(⇡A,B(R)) = ⇡A(R)

⇡A, B(�c(R)) = �c(⇡A, B(R))

CS 377 [Spring 2016] - Ho

RA Transformation Rules (2)
• Commutativity of joins, cartesian product, union, intersection 

• Associativity of join, cartesian product, union, intersection 

• Selection and join: if attributes in the selection condition
involves only attributes of one of the relations being joined

•

(R ✓ S) ✓ T = R ✓ (S ✓ T)

R ✓ S = S ✓ R

�c(R ./ S) = �c(R) ./ S

�c(R ./ S) = �c1(R) ./ �c2(S)

CS 377 [Spring 2016] - Ho

RA Transformation Rules (3)
• Commuting projection with join: if join condition involves

only attributes in the projection list, commute the
operations 

• Commuting selection with intersection, union, or
difference 

• Several others in the book…

�c(R ✓ S) = (�c(R)) ✓ (�c(S))

⇡L(R ./c S) = (⇡L1(R)) ./c (⇡L2(S))

CS 377 [Spring 2016] - Ho

Query Optimization Heuristic Algorithm
• Break up any select operations with conjunctive conditions into cascade

of select operations and move select operations as far down query tree
as permitted

• Rearrange leaf nodes so leaf nodes with most restrictive select
operations are executed first

• Combine cartesian product operation with a subsequent selection
operation into join operation

• Break down and move lists of projection attributes down the tree as far
as possible

• Identify subtrees that represent group of operations that can be executed
as a single algorithm

CS 377 [Spring 2016] - Ho

Example: SQL Query Optimization
SELECT lname 
FROM employee, works_on, project  
WHERE pname = ‘Aquarius’ and pnumber = pno  
AND bdate > ‘1957-12-31’;

Initial query tree

CS 377 [Spring 2016] - Ho

Example: SQL Query Optimization (2)
Move SELECT operations down the query tree

CS 377 [Spring 2016] - Ho

Example: SQL Query Optimization (3)
Apply more restrictive SELECT first (left most side of tree)

CS 377 [Spring 2016] - Ho

Replace cartesian product and select with join

Example: SQL Query Optimization (4)

CS 377 [Spring 2016] - Ho

Move projections down the tree

Example: SQL Query Optimization (5)

CS 377 [Spring 2016] - Ho

Query Optimization
• Logical level: heuristics based optimization to find a

better RA query tree

• SQL query —> initial logical query tree —> optimized
query tree

• Physical level: cost-based optimization to determine
“best” query plan

• Optimized query tree —> query execution plans —>
cost estimation —> “best” query plan

CS 377 [Spring 2016] - Ho

Cost-based Query Optimization
Estimate and compare the costs of executing a query using
different execution strategies and choose the strategy with the
lowest cost estimate

• Disk I/O cost

• Storage cost

• Computation cost

• Memory usage cost

• Communication cost (distributed databases)

CS 377 [Spring 2016] - Ho

Catalog Information
Database maintains statistics about each relation

• Size of file: number of tuples [nr], number of blocks [br], tuple
size [sr], number of tuples or records per block [fr], etc.

• Information about indexes and indexing attributes

• Attribute values - number of distinct values [V(att, r)]

• Selection cardinality - expected size of selection given value
[SC(att, r)]

• …

CS 377 [Spring 2016] - Ho

Catalog Information for Index
• Average fan-out of internal nodes of index i for tree-

structured indices [fi]

• Number of levels in index i (i.e., height of index i) [HTi]

• Balanced tree on attribute A of relation r:

• Hash index: 1

• Number of lowest-level index blocks in i (i.e., number of
blocks at the leaf level of the index) [LBi]

dlogfi V (A, r)e

CS 377 [Spring 2016] - Ho

Example: Bank Schema
Account relation

• faccount = 20 (20 tuples per block)

• V(bname, account) = 50 (50 branches)

• V(balance, account) = 500 (500 different balance
values)

• naccount = 10000 (10,000 tuples in account)

• baccount = 10000 / 20 = 500

CS 377 [Spring 2016] - Ho

SELECT Algorithms (Simple)
• Linear search (brute force): selection attribute is not

ordered and no index on attribute

• Cost: # blocks in relation = br

• Reserves example: 500 I/Os

• Binary search: selection attribute is ordered and no index

• Cost:  

dlog
2

(br)e| {z }
locating first tuple

+ dSC(att, r)/fre| {z }
blocks with selection

�1

CS 377 [Spring 2016] - Ho

Example: Binary search
• How expensive is the following query if we assume

Account is sorted by branch name?  

• Ans:

• # of tuples in the relation pertaining to Perryridge is total
number of tuples divided by distinct values: 10000/50

• Cost:  

�bname=‘Perryridge’(Account)

dlog2(500)e+ d200/20e � 1 = 18

CS 377 [Spring 2016] - Ho

SELECT Algorithms (Simple w/ Index)
• Index search: cost depends on the number of qualifying

tuples, cost of retrieving the tuples and the type of query

• Primary index

• Equality search on candidate key: HTi + 1

• Equality search on nonkey:

• Comparison search:

HTi + dSC(att, r)/fre

HTi + dc/fre

estimated number of tuples that satisfy condition

CS 377 [Spring 2016] - Ho

SELECT Algorithms (Simple w/ Index)
• Secondary index

• Equality search on candidate key: HTi + 1

• Equality search on nonkey: HTi + SC(att, r)

• Comparison search: HTi + LBi * c / nr + c

Note that linear file scan maybe
cheaper if the number of tuples
satisfying the condition is large!

CS 377 [Spring 2016] - Ho

Example: Index search
• How expensive is the following query if we assume primary

index on branch name? 

• Ans:

• 200 tuples relating to Perryridge branch => clustered index

• Assume B+-tree index stores 20 pointers per node, then
index must have between 3 and 5 leaf nodes with a depth
of 2

• Cost:

�bname=‘Perryridge’(Account)

2 + d200/20e = 12

CS 377 [Spring 2016] - Ho

SELECT Algorithms (Complex)
• Conjunctive selection (several conditions with AND)

• Single index: retrieve records satisfying some attribute condition
(with index) and check remaining conditions

• Composite index

• Intersection of multiple indexes

• Disjunctive selection (several conditions with OR)

• Index/binary search if all conditions have access path and take union

• Linear search otherwise

CS 377 [Spring 2016] - Ho

Example: Complex search
• How expensive if we want to find accounts where the branch name

is Perryridge with a balance of 1200 if we assume there is a primary
index on branch name and secondary on balance?

• Ans for using one index:

• Cost for branch name: 12 block reads

• Balance index is not clustered, so expected selection is 10,000 /
500 = 20 accounts

• Cost for balance: 2 + 20 = 22 block reads

• Thus use branch name index, even if it is less selective!

CS 377 [Spring 2016] - Ho

Example: Complex search (2)
• Ans for using intersection of two indexes:

• Use index on balance to retrieve set of S1 pointers: 2 reads

• Use index on branch name to retrieve set of S2 pointers: 2
reads

• Take intersection of the two

• Estimate 1 tuple in 50 * 500 meets both conditions, so we
estimate the intersection of two has one pointer

• Estimated cost: 5 block reads

CS 377 [Spring 2016] - Ho

Query Processing & Optimization: Recap
• Motivation for query optimization

• Query parse tree

• Query optimization heuristics

• RA transformation rules

• Cost-based query optimization

• SELECT

