
Midterm Review
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

Piazza Poll Results

CS 377 [Spring 2016] - Ho

Database Concepts
• Data model categories: high-level or conceptual data

models, low-level or physical data models, and
representational or implementation data models

• Physical data and logical data independence

• How metadata fits into the picture

• Three schema architecture

CS 377 [Spring 2016] - Ho

Entity Relationship (ER) Model
• Entity

• Attributes

• Weak Entity

• Relationship

• Degree

• Cardinality ratio constraint

• Participation constraint

CS 377 [Spring 2016] - Ho

Relation Model
• Relation, attributes

• Schema vs instance

• Relational model constraints

• Domain constraint

• Key constraint

• Referential integrity
constraint

CS 377 [Spring 2016] - Ho

ER to Relational Model
Entity set and relationships and convert them to relation

ER Model Relational model

Entity type Entity relation

1:1 or 1:N relationship Expand (or create R relation)

M:N relationship Create R relation with two foreign keys

n-ary relationship type Create R relation with n foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Key attribute Primary (or secondary) key

CS 377 [Spring 2016] - Ho

Relational Algebra
Operation Notation Purpose

SELECT Selects all tuples that satisfy the selection condition from a
relation R

PROJECT New relation with subset of attributes of R and removes
duplicate tuples

THETA_JOIN All combinations of tuples from R1 and R2 that satisfy the join
condition

EQUIJOIN Theta join with only equality join comparisons

NATURAL JOIN Equijoin except join attributes of R2 are not included in the
resulting relation

UNION Relation that includes all tuples in R1 or R2

INTERSECTION Relation that includes all tuples in both R1 and R2

DIFFERENCE Relation that includes all tuples in R1 that are not in R2

CARTESIAN
PRODUCT

Relation with attributes of R1 and R2 and includes tuples with
all possible combinations of tuples of R1 and R2

DIVISION Relation that includes all tuples t[X] in R1(Z) that appear in R1
in combination with every tuple from R2(Y) where

GROUP BY
AGGREGATE

Relation that includes the grouping attributes and the set
function values

R1 \R2

R1 [R2

R1 �R2

R1 ⇥R2

R1(Z)÷R2(Y)
Z = X [Y

R
1

⇤<join condition> R
2

R
1

./<join condition> R
2

R
1

./<join condition> R
2

⇡<atttribute list>(R)

�<selection condition>(R)

<group attrs>F<set funcs>

CS 377 [Spring 2016] - Ho

Banking Example
• Find the names of all

customers who have a loan
and a savings account at the
bank

• Find the names of all
customers who have a loan at
the Decatur branch but do not
have a savings account at any
branch of the bank

• Find all customers who have a
savings account at all branches
located in Atlanta city

CS 377 [Spring 2016] - Ho

Relational Calculus (Tuple Relational Calculus)

Query of the form: {t | CONDITION(t) }

• Conditions are formulas and are recursively defined

• Atomic formula (Relation(t), R.a op S.b / constant)

• Special formula quantifiers

• Universal quantifier

• Existential quantifier

(8t) (Condition(t))

(9t) (Condition(t))

CS 377 [Spring 2016] - Ho

Banking Example
• Find loan number for each

loan of an amount greater
than $1200

• Find the names of all
customers who have a loan
and a savings account at
the bank

• Find all customers who
have a savings account at
all branches located in
Atlanta city

CS 377 [Spring 2016] - Ho

SQL Data Definition
• Create database

• Create table

• Attribute datatypes and constraints

• Key constraints (primary and foreign key)

• Circular integrity constraints

• Alter tables

• Add/remove attributes

• Add/remove constraints

• Drop tables & databases

CS 377 [Spring 2016] - Ho

SQL Query
• Basic SQL query 

SELECT [DISTINCT] <attribute list> 
FROM <table list> 
[WHERE <condition on the tables>] 
[GROUP BY <grouping attributes>] 
[HAVING <group condition>] 
[ORDER BY <attribute list> ASC | DESC] 
[LIMIT <number of tuples>]

• Nested queries and temporal relations

• Advanced query formulations

CS 377 [Spring 2016] - Ho

SQL Data Modification
Data modification does not return a result but changes the
database

• INSERT (add new tuples)

• Literal values (constant or known values):  
INSERT INTO <table name>[(<attr names>)]  
VALUES (<list of values>);

• Result from a SELECT command:  
INSERT INTO <table name>[(<attr names>)]
(<SELECT subquery>)

CS 377 [Spring 2016] - Ho

SQL Data Modification (2)
Data modification does not return a result but changes the
database

• DELETE (remove tuples) 
DELETE FROM <relation> WHERE <condition>;

• Tuples are deleted from only one table at a time
unless CASCADE is specified on a referential
integrity constraint

• UPDATE (change value(s) of existing tuples)

CS 377 [Spring 2016] - Ho

SQL Data Modification (3)
Data modification does not return a result but changes the
database

• UPDATE (change value(s) of existing tuples)  
UPDATE <relation>  
SET <list of attribute assignments>  
WHERE <condition>;

• Modify/change certain attributes in certain tuples of a
relation

• Only changes tuples that match the WHERE condition

CS 377 [Spring 2016] - Ho

SQL Views
• View is a virtual table that does not exist in physical form

• Allows ability to present information in different ways to different
users

• Can be used like an ordinary relation and simplifies complex queries

• Limits data access to specific users (sensitive data can be hidden)

• If conceptual schema changes, only the SELECT query needed to
construct view needs to change

• Syntax: 
CREATE VIEW <name> AS <query>;

CS 377 [Spring 2016] - Ho

MySQL Session Variables
• A session starts with a connection to the SQL server and

ends when the connection is closed

• Session variables can be created anytime during a SQL
session and exists for the remainder of the SQL session

• Always begins with the symbol “@“ 
(e.g, @x, @count)

• Syntax:  
SET <varName> = express; 
SELECT … INTO @varname FROM … WHERE …;

CS 377 [Spring 2016] - Ho

MySQL Temporary Tables
• Temporary tables are used to store and process

intermediate results: 
CREATE TEMPORARY TABLE  
…

• Same selection, update, and join capabilities in typical
SQL tables

• Deleted when the current client session terminates

• Stored functions

CS 377 [Spring 2016] - Ho

MySQL Stored Procedures
• Generalization of SQL by adding programming language-

like structure to the SQL language

• Syntax: 
DELIMITER <DL>  
CREATE PROCEDURE <procedure name> (parameters)  
 BEGIN 
 <statements of the procedure> 
 END <DL>

• A stored procedure can only be used within the database
where the stored procedure was defined

CS 377 [Spring 2016] - Ho

MySQL Stored Procedures (2)
• Stored procedure can have local variables

• BEGIN and END keywords defines the scopes of local
variables

• Inner levels can access variables from outer levels but
not vice-versa

• Stored procedure can have parameters (similar to
methods in programming language)

• 3 modes to pass in parameters (IN, OUT, INOUT)

CS 377 [Spring 2016] - Ho

MySQL Stored Procedures (3)
Control structures are available similar to traditional programming languages

• IF statements (conditional)

• IF <condition> THEN <command> END IF;

• IF <condition> THEN <command1>  
ELSE <command2> END IF;

• CASE statements (alternative conditional structure) 
CASE <case expression> 
 WHEN <expression1> THEN <command1> 
 … 
 ELSE <commandN>  
END CASE;

CS 377 [Spring 2016] - Ho

MySQL Stored Procedures (4)
Control structures are available similar to traditional programming languages

• LOOP statements (repeated execution)

• WHILE <condition> DO <commands> 
END WHILE;

• REPEAT <commands> UNTIL <condition> 
END REPEAT;

• <LoopLabel>: 
LOOP 
 <commands> 
 IF <condition1> THEN LEAVE <LoopLabel>; 
 IF <condition2> THEN ITERATE <LoopLabel>; 
END LOOP;

CS 377 [Spring 2016] - Ho

MySQL Stored Functions
User-defined functions  
CREATE FUNCTION <function_name>(parameter) 
 RETURNS datatype 
 [NOT] DETERMINISTIC 
<statements>;

• Returns a single value (similar to aggregate functions)

• Meant to encapsulate common formulas or business
rules that are reusable

• Can be used in SQL SELECT statements

CS 377 [Spring 2016] - Ho

JDBC Program Steps
• Import JDBC library (java.sql.*)

• Load appropriate JDBC driver

• Create a connection object

• Create a statement object

• Submit SQL statement

• Process query results

• Close connections

