
JDBC (Java / SQL Programming)
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

JDBC
• Acronym for Java Database Connection

• Provides capability to access a database server through a
set of library functions

• Set of library functions forms a standardized Application
Program Interface (API)

• Allows programmer to send SQL statements for
execution and query retrieval

• Supported by most major database vendors

CS 377 [Spring 2016] - Ho

JDBC Program Steps
• Import JDBC library (java.sql.*)

• Load appropriate JDBC driver

• Create a connection object

• Create a statement object

• Submit SQL statement

• Process query results

• Close connections

CS 377 [Spring 2016] - Ho

JDBC: java.sql Package
• Library functions are contained in the java.sql package

• Every JDBC must import the classes in this package  
import java.sql.*

• Designed to access any database platform

• Un-avoidable that there will be a system-dependent
component to access a specific database type

• Drivers are used to support communication
transparency between the different vendors

CS 377 [Spring 2016] - Ho

JDBC Driver

Java Program

JDBC API
JDBC driver 
(e.g., MySQL

driver)

Database 
(e.g., MySQL

Server)

direct calls using specific
database protocols

CS 377 [Spring 2016] - Ho

JDBC Driver
• A communication driver is a system dependent software

module that is written specifically according to a given
communication protocol

• Different vendors can provide the same data service
through different communication protocols

• A JDBC program must first load the desired
communication driver

• Each system has its own way to load the driver  
(Biggest headache in JDBC programming)

CS 377 [Spring 2016] - Ho

Dealing with SQLException
Most methods in the JDBC SQL library will throw SQLException

• Catch the exception  
try 
{ 
 < method in java.sql package > 
} 
catch (Exception e)  
{ 
< statements to execute when there is an error>  
}

• Specify throws SQLException to each method in your program -
exit program upon error

CS 377 [Spring 2016] - Ho

DriverManager: Managing the JDBC Driver
• Attempt at standardization of loading the JDBC communication

driver

• Contains methods for managing a set of JDBC drivers

• Methods contained in the class:

• static void registerDriver(Driver driver) - registers the given
driver with the device manager by reading in the driver code from
the installed library

• static Connection getConnection(String url, String user,
String password) - attempts to establish a connection and
should only be used after the driver was registered

CS 377 [Spring 2016] - Ho

Registering a Driver (Textbook Way)
• Standard way to register a platform dependent JDBC

driver is to use the registerDriver() method

• Example: registering the JDBC driver for Oracle: 
DriverManager.registerDriver(new
oracle.jdbc.driver.OracleDriver());

• Unfortunately not all vendors use this approach to load its
JDBC driver (e.g., MySQL)

CS 377 [Spring 2016] - Ho

Registering a MySQL Driver
• Exploits Java’s built-in capability to load a class

• Driver is loaded using the java.lang.reflect package

• Syntax: 
Class.forName(“com.mysql.jdbc.Driver”);

CS 377 [Spring 2016] - Ho

Dynamic Loading Feature
• Java has the ability to load user-written classes

dynamically into a compiled program and execute it

• Load a different class that has a method with the same
name, you can get the behavior of the method to
change

• Example: 2 Java classes, Add and Sub, each with a
method with the same name main

• Compile and run each separately

CS 377 [Spring 2016] - Ho

Add.java
public class Add  
{ 
 public static void main (String args[]) 
 {  
 	 int a = Integer.parseInt(args[0]); 
 	 int b = Integer.parseInt(args[1]); 
 
 	 System.out.println("Sum = " + (a + b)); 
 }  
 }

CS 377 [Spring 2016] - Ho

Sub.java
 public class Sub 
 { 
 public static void main (String args[]) 
 {  
 	 int a = Integer.parseInt(args[0]); 
 	 int b = Integer.parseInt(args[1]); 
 
 	 System.out.println("Difference = " + (a - b));  
 }  
 }

CS 377 [Spring 2016] - Ho

Dynamic Loading: java.lang.reflect
• Commonly used by programs which require ability to examine or modify

runtime behavior of applications

• Applications: create instances of objects using their fully-qualified names

• Debuggers & Test Tools: examine private members of classes

• Class browser: enumerate members of a class

• Drawbacks:

• Performance overhead

• Security restrictions

• Exposure of internals

CS 377 [Spring 2016] - Ho

Java Demo 
(DynamicLoader.java)

CS 377 [Spring 2016] - Ho

Location of the JDBC Driver Software
• Java must be able to find (locate) the JDBC Driver

• CLASSPATH variable must point to the SQL Java
JDBC library (depends on your installation)

• Include the PATH to run the JDBC program

• Example: 
java -cp <location of jdbc driver library> <your program>

CS 377 [Spring 2016] - Ho

Create a Connection Object
• Network connection to a database server is established using the

getConnection method in the DriverManager class

• Syntax: 
Connection SQLconnection; // variable for connection 
SQLconnection = DriverManager.getConnection(URL, user,
password);

• Parameters:

• URL = location of the database server

• user = userid

• password = password associated with userid

CS 377 [Spring 2016] - Ho

JDBC: SQL Connection
• Connection contains a reference to the data structure that

stores information on the network connection

• Connection must be passed to subsequent methods to
communicate with the MySQL server

• Only need a single connection to the server

• URL must contain the protocol, the host name, the port
number, and the database name 
(e.g., “jdbc:mysql://cs377spring16.mathcs.emory.edu:
3306/companyDB”)

http://cs377spring16.mathcs.emory.edu

CS 377 [Spring 2016] - Ho

Creating a Statement Object
• java.sql.Statement class is used to execute a SQL

statement (by sending it to the database)

• It also has buffers to receive the result tuples

• Before submitting a query, you must first create a
Statement object for the processing of the query

• Syntax: 
Statement SQLstatement; // variable ref for obj 
SQLstatement = <sqlconnection>.createStatement();

CS 377 [Spring 2016] - Ho

Submit a SQL Query
• executeQuery method sends the SQL query using the

DBMS connection to the DBMS server for processing

• Syntax: 
ResultSet rset; // reference variable for results  
rset = SQLstatement.executeQuery(“<SQL query>”) ;

• Example: 
ResultSet rset; // reference variable for results  
rset = SQLstatement.executeQuery(“select * from
employee”);

CS 377 [Spring 2016] - Ho

Submit a SQL Query (2)
• Statement object can be recycled if SQL queries are

executed in serial

• Execute one query and read the result completely
before executing next query

• For multiple queries at the same time, you need to create
multiple Statement objects — one per parallel query

CS 377 [Spring 2016] - Ho

Submit a SQL Update
• executeUpdate method sends the SQL command using

the DBMS connection to the DBMS server for processing

• SQL command maybe an INSERT, UPDATE, or DELETE
statement or even creation of a table or constraint

• Returns an update count

CS 377 [Spring 2016] - Ho

Process Query Results
• ResultSet returns an iterable that contains all the tuples in

the output relation

• Retrieve one tuple:  
rset.next() - returns null if there are no more tuples
otherwise returns the next tuple

• Retrieve all tuples in the result set 
while (rset.next() != null) {  
 <process the tuple> 
}

CS 377 [Spring 2016] - Ho

Closing Connections
• Upon completion, you should close the various

connections and free resources

• Close and free the result set: 
rset.close();

• Close and free the Statement object 
SQLstatement.close();

• Close and free the Connection buffer  
SQLconnection.close();

CS 377 [Spring 2016] - Ho

JDBC Demo 
(Employee.java)

CS 377 [Spring 2016] - Ho

Useful ResultSet Methods
• beforeFirst(): moves the read cursor to the front of the ResultSet object,

just before the first row (can be used to re-read the data again)

• first(): moves the read cursor to the first row of the ResultSet object

• absolute(rowNumber): moves the read cursor to the row rowNumber of
the ResultSet object

• afterLast(): moves the read cursor to the end of this ResultSet object,
after the last row (can be used to read the data in reverse order)

• last(): moves the read cursor to the last row of this Result object  
(can be used to find number of rows)

• getRow(): returns the row index of the current row

CS 377 [Spring 2016] - Ho

JDBC Demo 
(Employee2.java & Employee3.java)

CS 377 [Spring 2016] - Ho

Retrieve a Field in the Result Tuple
Use getter methods to retrieve attribute values from the current row

• rset.getString(index): returns attribute at position index as a
String

• rset.getInt(index): returns attribute at position index as int
type

• rset.getFloat(index): returns attribute at position index as
float type

• rset.getDouble(index): returns attribute at position index as
double type

CS 377 [Spring 2016] - Ho

Common Java and SQL Type Equivalence
Java Method SQL Type

getInt INTEGER
getLong BIG INT
getFloat REAL / FLOAT

getDouble DOUBLE
getBignum DECIMAL
getBoolean BIT / BOOLEAN
getString VARCHAR / CHAR
getDate DATE
getTime TIME

getTimeStamp TIMESTAMP
getOjbect any type

CS 377 [Spring 2016] - Ho

Metadata About ResultSet
• ResultSetMetData class contains meta information about

the ResultSet

• Methods to retrieve/obtain the meta data

• Variables to store values of the meta data

• Syntax:  
ResultSet rset;  
rset = SQLstatement.executeQuery(“<SQL query”>);  
ResultSetMetaData metaData; 
metaData = rset.getMetaData();

CS 377 [Spring 2016] - Ho

Useful ResultSetMetaData Methods
• int getColumnCount(): returns the number of columns in

the tuples of the ResultSet

• String getColumnName(int columnIndex): returns the
name of the column whose index is specified

• String getColumnType(int columnIndex): returns the
integer code for the data type of the attribute whose index
is specified (see java.lang.Types for the codes)

• String getColumnTypeName(int columnIndex): returns
the type of column whose index is specified

CS 377 [Spring 2016] - Ho

Useful ResultSetMetaData Methods (2)
• int getColumnDisplaySize(int columnIndex): returns the display

width (number of characters needed to display the value) of the
attribute whose index is specified

• int getPrecision(int columnIndex): returns the number of digits of the
field/column whose index is specified - data type must be numeric

• int getScale(int columnIndex): returns the number of decimal places
of the field/column whose index is specified - data type must be
numeric

• String getColumnClassName(int columnIndex): returns the name of
the Java class (e.g., “java.lang.String”) for the attribute whose index is
specified

CS 377 [Spring 2016] - Ho

JDBC Demo 
(MetaData.java)

