
Indexing: B+-Tree
CS 377: Database Systems



CS 377 [Spring 2016] - Ho

Recap: Indexes
• Data structures that organize records via trees or hashing 

• Speed up search for a subset of records based on values 
in a certain field (search key) 

• Search key need not be the same as the key! 

• Hash index 

• Good for equality search 

• In expectation: O(1) I/Os and CPU performance for search 
and insert



CS 377 [Spring 2016] - Ho

B+-Tree
• Dynamic, multi-level tree data structure 

• Adjusted to be height-balanced (all leaf nodes are at 
same depth) 

• Good performance guarantee — supports efficient 
equality and range search 

• Widely used in DBMS



CS 377 [Spring 2016] - Ho

B+-Tree Basics
• Order p: maximum 

number of children 
at each node 

• Every node contains 
m entries, with  

• Minimum 50% occupancy 

• Only exception is root node

https://www.simple-talk.com/iwritefor/articlefiles/735-image012.jpg

https://www.simple-talk.com/iwritefor/articlefiles/735-image012.jpg


CS 377 [Spring 2016] - Ho

B+-Tree Node Structure
• Typical node 

• Ki are the search-key values 

• Pi are the points to the children (for non-leaf nodes) or 
pointers to records (for leaf nodes) 

• Search keys in nodes are ordered 

• K1 < K2 < … < Kn-1

P1 K1 P2 Pn-1 Kn-1 Pn…



CS 377 [Spring 2016] - Ho

B+-Tree: Non-Leaf Node
• Multi-level sparse index on the leaf nodes 

• All search-keys in the subtree to which P1 points to are 
less than K1 

• All search-keys in the subtree to which Pn points to have 
values greater than Kn-1

 23  56  

To keys 
23≤ k<56 

To keys 
56≤ k 

To keys 
k<23 



CS 377 [Spring 2016] - Ho

B+-Tree: Leaf Node
• All pointers (except the last one) point to tuples or 

records 

• Search key values are sorted in order 

• Last pointer (Pn) points to next leaf node in search-key 
order

 20  30  

From a  
non-leaf node 

Last pointer: to the next leaf node 

20 Susan 2.7 

30 James 3.6 

50 Peter 1.8 

… … … 

points to tuple 



CS 377 [Spring 2016] - Ho

Example: B+-Tree

Figure from Database System Concepts book

Brandt     Califieri     Crick	 Einstein     El Said	   Gold         Ka6          Kim	 Mozart       Singh	 Srinivasan      Wu	

Internal nodes 

Root node 

Leaf nodes 

10101     Srinivasan    Comp. Sci.     	65000	
12121     Wu 	 	 Finance	 	90000	
15151    Mozart   	 Music 	 	40000	
22222    Einstein 	 Physics	 	95000	
32343    El Said	 	 History	 	80000	
33456    Gold 	 	 Physics	 	87000	
45565    Ka6 	 	 Comp. Sci. 	75000	
58583    Califieri 	 History	 	60000	
76543    Singh	 	 Finance	 	80000	
76766    Crick	 	 Biology	 	72000	
83821    Brandt	 	 Comp. Sci. 	92000	
98345    Kim 	 	 Elec. Eng. 	80000	
	

Einstein      Gold	

 Mozart	

Srinivasan   	



CS 377 [Spring 2016] - Ho

B+-Tree Search
• Start from root 

• Examine index entries in non-leaf nodes to find the 
correct children 

• Searched using a binary or linear search 

• Traverse down the tree until a leaf node is reached



CS 377 [Spring 2016] - Ho

Example: B+-Tree Exact Query

Brandt     Califieri     Crick	 Einstein     El Said	   Gold         Ka6          Kim	 Mozart       Singh	 Srinivasan      Wu	

Internal nodes 

Root node 

Leaf nodes 

10101     Srinivasan    Comp. Sci.     	65000	
12121     Wu 	 	 Finance	 	90000	
15151    Mozart   	 Music 	 	40000	
22222    Einstein 	 Physics	 	95000	
32343    El Said	 	 History	 	80000	
33456    Gold 	 	 Physics	 	87000	
45565    Ka6 	 	 Comp. Sci. 	75000	
58583    Califieri 	 History	 	60000	
76543    Singh	 	 Finance	 	80000	
76766    Crick	 	 Biology	 	72000	
83821    Brandt	 	 Comp. Sci. 	92000	
98345    Kim 	 	 Elec. Eng. 	80000	
	

Einstein      Gold	

 Mozart	

Srinivasan   	

SELECT * FROM instructor WHERE name = ‘Katz’; 
Katz < Mozart

Katz > Gold



CS 377 [Spring 2016] - Ho

Example: B+-Tree Range Query

Brandt     Califieri     Crick	 Einstein     El Said	   Gold         Ka6          Kim	 Mozart       Singh	 Srinivasan      Wu	

Internal nodes 

Root node 

Leaf nodes 

10101     Srinivasan    Comp. Sci.     	65000	
12121     Wu 	 	 Finance	 	90000	
15151    Mozart   	 Music 	 	40000	
22222    Einstein 	 Physics	 	95000	
32343    El Said	 	 History	 	80000	
33456    Gold 	 	 Physics	 	87000	
45565    Ka6 	 	 Comp. Sci. 	75000	
58583    Califieri 	 History	 	60000	
76543    Singh	 	 Finance	 	80000	
76766    Crick	 	 Biology	 	72000	
83821    Brandt	 	 Comp. Sci. 	92000	
98345    Kim 	 	 Elec. Eng. 	80000	
	

Einstein      Gold	

 Mozart	

Srinivasan   	

SELECT * FROM instructor WHERE name > “El Said” 
AND name < “Singh”;

El Said < Mozart

El Said < Gold

Find El Said

Follow pointer until you hit upper bound



CS 377 [Spring 2016] - Ho

B+-Tree Insert
• Find the leaf node in which the search-key value would appear 

• If the search-key value is already present in the leaf node 

• Add the record to the file 

• Add pointer to the bucket (if necessary) 

• If search-key value is not present 

• Add record to main file 

• If room in the leaf node, insert (key, pointer) pair in leaf node 

• Otherwise split the node along with the new (key, pointer) pair



CS 377 [Spring 2016] - Ho

Example: B+-Tree Insert

Brandt     Califieri     Crick	 Einstein     El Said	   Gold         Ka6          Kim	 Mozart       Singh	 Srinivasan      Wu	

Internal nodes 

Root node 

Leaf nodes 

10101     Srinivasan    Comp. Sci.     	65000	
12121     Wu 	 	 Finance	 	90000	
15151    Mozart   	 Music 	 	40000	
22222    Einstein 	 Physics	 	95000	
32343    El Said	 	 History	 	80000	
33456    Gold 	 	 Physics	 	87000	
45565    Ka6 	 	 Comp. Sci. 	75000	
58583    Califieri 	 History	 	60000	
76543    Singh	 	 Finance	 	80000	
76766    Crick	 	 Biology	 	72000	
83821    Brandt	 	 Comp. Sci. 	92000	
98345    Kim 	 	 Elec. Eng. 	80000	
	

Einstein      Gold	

 Mozart	

Srinivasan   	

INSERT INTO instructor(name) VALUES(‘Adams’);

No room in the 
leaf - split into 2



CS 377 [Spring 2016] - Ho

Example: B+-Tree Insert (2)

 Adams     Brandt   	 Califieri      Crick	

Split so that Adams and Brandt on one side, Califieri and Crick on the other

Since we are introducing new leaf node, we need to update the parent leaf…

Adams     Brandt	 Califieri     Crick	 Einstein    El Said	 Gold     Ka8     Kim	 Mozart     Singh	 Srinivasan    Wu	

Califieri    Einstein    Gold	 Srinivasan   	

Mozart     	



CS 377 [Spring 2016] - Ho

Example: B+-Tree Insert (3)

INSERT INTO instructor(name) VALUES(‘Lamport’);

No room in the leaf - split into 2

Adams     Brandt	 Califieri     Crick	 Einstein    El Said	 Gold     Ka8     Kim	 Mozart     Singh	 Srinivasan    Wu	

Califieri    Einstein    Gold	 Srinivasan   	

Mozart     	



CS 377 [Spring 2016] - Ho

Example: B+-Tree Insert (4)
But after split, there is no room in the parent node either, so parent 
needs to be split which affects the root

Califieri      Einstein   	 Srinivasan   	

 Gold       Mozart     	

    Kim   	

Adams    Brandt	 Califieri    Crick 	 Einstein    El Said 	  Gold     Ka; 	 Kim     Lamport 	 Mozart     Singh 	 Srinivasan    Wu 	



CS 377 [Spring 2016] - Ho

B+-Tree Deletion
• Find the leaf node in which the search-key value appears 

and delete it from the main file and bucket 

• Delete the (key, pointer) pair from the leaf node 

• If underflow occurs (leaf node is under minimum size) 

• Merge with sibling (reduce tree pointers from parent 
nodes) 

• Redistribute entries from left or right sibling if merge 
not possible



CS 377 [Spring 2016] - Ho

Example: B+-Tree Delete

DELETE FROM instructor where name = ‘Srinivasan’;

Adams     Brandt	 Califieri     Crick	 Einstein    El Said	 Gold     Ka8     Kim	 Mozart     Singh	 Srinivasan    Wu	

Califieri    Einstein    Gold	 Srinivasan   	

Mozart     	

After the deletion, only Wu is in the leaf node, and that is 
too empty since it needs to be at least 50% occupied => 
must merge with a sibling node or redistribute entries 
between the nodes



CS 377 [Spring 2016] - Ho

Example: B+-Tree Delete (2)

Adams     Brandt Califieri     Crick Einstein    El Said Gold     Ka7     Kim Mozart     Singh     Wu 

Califieri    Einstein     

  Gold      

Mozart     

Merged with the previous sibling and delete from 
parent, but parent also only has one pointer so we 
must either merge or redistribute… since merging is 
not possible, must redistribute



CS 377 [Spring 2016] - Ho

Example: B+-Tree Delete (3)

DELETE FROM instructor where name = ‘Singh’;

Adams     Brandt Califieri     Crick Einstein    El Said Gold     Ka7     Kim Mozart     Singh     Wu 

Califieri    Einstein     

  Gold      

Mozart     

Easy case - just delete!



CS 377 [Spring 2016] - Ho

Example: B+-Tree Delete (4)

Adams     Brandt Califieri     Crick Einstein    El Said Gold     Ka7     Kim Mozart     Wu 

Califieri    Einstein     

  Gold      

Mozart     

DELETE FROM instructor where name = ‘Wu’;

Deleting Wu makes the leaf undefiled and not 
possible to merge with sibling - so redistribute



CS 377 [Spring 2016] - Ho

Example: B+-Tree Delete (5)

Adams     Brandt Califieri     Crick Einstein    El Said Gold     Ka7       Kim     Mozart 

Califieri    Einstein     

  Gold      

  Kim     

Update parent node to 
reflect new redistribution



CS 377 [Spring 2016] - Ho

Example: B+-Tree Delete (6)

Adams     Brandt Califieri     Crick Einstein    El Said Gold     Ka7       Kim     Mozart 

Califieri    Einstein     

  Gold      

  Kim     

DELETE FROM instructor where name = ‘Gold’;

Merge Katz with the sibling on the right

If we merge the leaf nodes,  
only one pointer left here!



CS 377 [Spring 2016] - Ho

Example: B+-Tree Delete (7)

Delete original root node to avoid condition where root has only one child

Depth of tree has now decreased by 1!

Adams     Brandt Califieri     Crick Einstein    El Said Ka5    Kim    Mozart      

Califieri    Einstein    Gold      



CS 377 [Spring 2016] - Ho

B+-Tree: Dealing with Duplicates
• Can have many data entries with the same key value (e.g., Year of a 

movie) 

• Solution 1: 

• All entries with a given key value reside on a single page 

• Use overflow pages 

• Solution 2: 

• Allow duplicate key values in data entries 

• Modify search to deal with duplicates



CS 377 [Spring 2016] - Ho

B+-Tree Performance
• How many I/O’s are required for each operation? 

• Worst case cost of insertion / deletion are proportional 
to the height of the tree (more or less) 

• Height is roughly the logn/2 (number of records) 

• Fanout can be typically large (in the hundreds) - many 
keys and pointers can fit into one block 

• A 4-level tree is enough for “typical” tables



CS 377 [Spring 2016] - Ho

B+-Tree Index Files
• Alternative to indexed-sequential files 

• (Pro) Automatically reorganizes itself with small, local changes when 
dealing with insertions/deletions 

• (Pro) Reorganization of entire file is not required to maintain 
performance 

• (Con) Extra insertion and deletion overhead 

• (Con) Additional space required 

• Cool visualization - https://www.cs.usfca.edu/~galles/visualization/
BPlusTree.html

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html


CS 377 [Spring 2016] - Ho

Multiple-Key Access
• What if we want to access more than one attribute such 

as a combination of attributes? 

• Example: 
SELECT * from EMPLOYEE WHERE dno = 4 AND age = 
59; 

• Assume that we may have created index on dno and/or 
age



CS 377 [Spring 2016] - Ho

Multiple-Key Access Strategies
• Dno has index, age does not: access tuples with dno=4 

using index then do linear search to satisfy age = 59 

• Age has index, dno does not: access tuples with age = 
59 using the index and then do linear search to satisfy 
dno = 4 

• Dno and age have indices: get the set of pointers and 
find the intersection of these records or pointers 

But what if the number of records that meet each 
condition is individually large, but the intersection is 

small? Are the methods efficient?



CS 377 [Spring 2016] - Ho

Composite Search Keys
• Search on a combination of attributes (e.g., age and dno) 

• Lexicographic ordering (a1, a2) < (b1, b2) if either 

• a1 < b1 or 

• a1 = b1 and a2 < b2 

• Suppose we have an index on (dno, age) 

• Can efficiently handle queries with dno = 4 and age = 59 

• Can also efficiently handle cases with dno = 4 and age < 59



CS 377 [Spring 2016] - Ho

Beyond B+-Tree and Hashing
• Tree-based indexes: R-trees and variants, GIST, etc. 

• Text indexes: inverted-list index, suffice arrays, etc. 

• Other tricks: bitmap index, bit-sliced index, etc.



CS 377 [Spring 2016] - Ho

Choosing Indexes
• What indexes should we create? 

• Which relations should have indexes? 

• What field(s) should be in the search key? 

• Should we build several indexes? 

• For each index, what kind should it be? 

• Clustered? 

• Hash/tree?



CS 377 [Spring 2016] - Ho

Choosing Indexes (2)
• Consider best plan using current index and see if a better 

plan is possible with an additional index — if so, create 

• Must understand how DBMS evaluates queries and 
creates query evaluation plans 

• Consider tradeoffs: faster queries but slower updates 
and more storage



CS 377 [Spring 2016] - Ho

Choosing Indexes (3)
• Attributes in WHERE clause are candidates for index keys 

• Exact match condition suggests hash index 

• Indexes also speed up joins 

• Range query suggests tree index 

• Multi-attribute search keys should be considered when a 
WHERE clause contains several conditions 

• Order of attributes is important for range queries



CS 377 [Spring 2016] - Ho

Index Demo on IMDB 
(imdb-index-example.sql)



CS 377 [Spring 2016] - Ho

Tuning Indexes
• Initial choice of indexes may have to be revised 

• Certain queries may take too long to run without an 
index 

• Certain indexes may not get used at all 

• Certain indexes undergo too much updating because 
the attribute undergoes frequent changes



CS 377 [Spring 2016] - Ho

Indexing: Recap
• B+-Tree 

• Composite search keys 

• Choosing indexes


