
Indexing: Overview & Hashing
CS 377: Database Systems
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Recap: Data Storage

Memory DBMS

blocks

Data items

Records

Blocks

Files

Disk

Different ways to organize files for 
better performance
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Motivation for Index
• Suppose we want to search for employees of a specific 

age in our company database with a relation:  
SELECT * from Employee where age = 25; 

• Simple scan: O(N) — inefficient to read all tuples to find 
one 

• Idea: Sort the records by age and we know how to do 
this fast (several efficient algorithms such as merge sort, 
heapsort, etc.) 

• Binary search: O(log2 N)
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Motivation for Index (2)
• What if we want to be able to search quickly over multiple 

attributes (e.g., not just age)? 

• Idea: Keep multiple copies of the records, each sorted 
by one attribute set — very expensive from a storage 
perspective 

• Are there better techniques that allow better tradeoffs 
between storage and query speed?
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Indexes
• Data structures that organize records via trees or hashing 

• Speed up search for a subset of records based on 
values in a certain field (search key) 

• Any subset of the fields of the relation can be the 
search field 

• Search key need not be the same as the key! 

• Contains a collection of data entries (each entry with 
sufficient information to locate the records)
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Index Effect
Index maps the search key value to the list of blocks that 
contains the search key value

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/intro.html


CS 377 [Spring 2016] - Ho

Index File
• Stores records in the 

following format:  
Search Key | Block Ptr 

• Size of index file is much 
smaller than size of a 
data file 

• Allows you to locate the 
block that contains the 
record quickly
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Dense vs Sparse Index
• Dense: one index entry for each search key value 

• Sparse: index entries only for some of the search values
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Dense vs Sparse Index (2)
• Sparse: 

• Less index space — may fit in memory (faster) 

• Potentially more varied time to find a record within a block 

• Easier update process 

• Records must be clustered 

• Dense: 

• Can directly tell if a record exists without accessing file 

• More index space
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Primary Index
• Created for the primary key of a table 

• Usually ordered index whose search key is the sort key 
for the sequential file 

• Typically sparse index 

• Binary search on the index file requires fewer block 
accesses than on data file
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Example: Primary Index
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Clustering Index
• Created on an ordered non-key field (not unique), known 

as a cluster field 

• One index entry for each distinct value of the field 

• Index entry points to the first data block that contains 
records with that field value 

• Insertion and deletion are relatively straightforward
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Example: Clustering Index
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Secondary Index
• An ordered index whose search key is not the sort key for 

the sequential file 

• Unique non-ordering key field results in a dense index 
with an entry for each record 

• Not unique fields results in an entry for each distinct 
value (nondense index) 

• Multiple secondary indexes for the same file 

• Requires more space and longer search time
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Example: Secondary Index (Dense)
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Summary of Types of Indexes

Search key used for 
ordering of file

Search key not used 
for ordering of file

Search key is key of 
relation

Primary index — 
sparse

Secondary index (key) 
— dense

Search key is not key 
of relation

Clustering index — 
sparse

Secondary index 
(nonkey) — dense or 

sparse
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Multi-level Index
• What if index can’t fit in 

memory? 

• What if we want faster 
search than log2(n)? 

• Solution: An index file is 
also a data file — create 
an index on the index file
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Example: Multi-level Index
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SQL Index
• PRIMARY KEY declaration automatically creates a 

primary index 

• UNIQUE key automatically creates a secondary index 

• Additional secondary indexes can be created on non-key 
attributes 
CREATE INDEX <indexName> ON <Relation>(<attr>); 

• Example: Company Database  
CREATE INDEX employeeAgeIdx ON Employee(Age);
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Index Structures
• Hash index 

• Good for equality search 

• In expectation: O(1) I/Os and CPU performance for 
search and insert 

• B+ tree index 

• Good for range and equality search 

• O(logF(N)) I/O cost for search, insert, and delete
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Hash Function
• A hash function, h, is a function 

which transforms a search key 
from a set K, into an index in a 
table of size n 
h: K —> {0, 1, …, n-2, n-1} 

• Bucket is a location (slot) in the 
bucket array (or the hash table) 

• Different search keys can be 
hashed into the same bucket
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Hash Function Properties
• Minimize collisions (different hash keys should hash to 

different values whenever possible) 

• Uniform — each bucket is assigned the same number of 
search key values from the set of all possible values 

• Random — each bucket will have the same number of 
records assigned to it irrespective of the actual 
distribution of search-key values in the file 

• Be easy and quick to compute



CS 584 [Spring 2016] - Ho

Hash Function Usage
• The mark of a computer scientist is their belief in hashing 

• Possible to insert, delete, and lookup items in a large 
set in O(1) time per operation 

• Widely used in a variety of applications 

• Crytpography, table or database lookup, caches for 
large datasets, finding duplicate records, finding similar 
“items”, etc.
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Hash Index
• Hash function, h, distributes all search-key values to a 

collection of buckets 

• Each bucket contains a primary page plus overflow 
pages 

• Buckets contain data entries 

• Entire bucket has to be searched sequentially to locate 
a record (since different search-key values may be 
mapped to same bucket)
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Example: Hash Index
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Bucket Overflows
• Causes of bucket overflows 

• Insufficient buckets 

• Skew in distribution of records 

• Multiple records with the same search-key value 

• Hash function produces non-uniform distribution 

• Overflow chaining links the buckets together to handle 
when a certain bucket has a large number of entries
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Example: Overflow Hash
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Hash Index Query
• Compute hash value 

h(x) 

• Read the disk block 
pointed to by the block 
pointer h(x) into memory 

• Linear search the 
bucket for x, ptr(x) 

• Use ptr(x) to access x 
on disk

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/hashing.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/hashing.html
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Hash Index Insert/Deletion
• Hash the new item h(x) 

• Find the hash bucket for the item 

• Add/delete item from hash bucket 

• If there is insufficient space, allocate an overflow 
bucket and then add it to the overflow bucket
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Example: Multi-level Index Insertion
• Insert a tuple with value 35 in the search key 

• What do we need to do?
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Example: Multi-level Index Insertion
• Insert a tuple with value 15 in the search key 

• What do we need to do?
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Potential Problems
• What happens after many insertions? 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Static Hashing Issues
Databases grow and shrink with time, while static hashing 
assumes a fixed set of B bucket addresses 

• If initial number of buckets is too small, performance 
will degrade due to too much overflow 

• If space allocated for anticipated growth or database 
shrinks, buckets will be underutilized and space will be 
wasted
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Fixing Static Hashing
• One solution: periodic re-organization of the file with new 

hash functions 

• Expensive — rehash all keys into a new table! 

• Disrupts normal operations 

• Another (better) solution: dynamic hashing techniques 
that allow size of the hash table to change with relative 
low cost
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Extendible Hashing (Fagin, 1979)
Main idea: 

• Directory of pointers to the buckets 

• Double the number of buckets by splitting just the 
bucket that overflowed 

• Directory is much smaller than file, so doubling it is 
cheaper



CS 377 [Spring 2016] - Ho

Extendible Hashing Structure
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Example: Extendible Hashing Structure

0 0

bucket 1bucket address table

hash prefix

# of leading bits of the hash

Instructor(ID, Lname, Department, Salary) 
and we want to build a secondary index on the 

department attribute

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/PPT-dir/ch11.ppt

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/PPT-dir/ch11.ppt
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Example: Extendible Hashing Structure (2)
Insert 3 new tuples: (15151, Mozart, Music, 40000),  

(10101, Srinivasan, Comp. Sci, 90000),  
(12121, Wu, Finance, 90000) 

1 1

bucket address table

hash prefix

1

15151 Music 40000

10101
12121

Srinivasan 90000
Wu 90000

Mozart

Comp. Sci.
Finance
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Example: Extendible Hashing Structure (3)
Insert new tuple Einstein whose first 1 bit hash 

matches the 2nd bucket and overflows  => increase 
the hash prefix and have the new bucket

2 1

2

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu

10101 Comp. Sci. 65000Srinivasan

22222 Einstein Physics 95000
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Example: Extendible Hashing Structure (4)

3

1

3

3

bucket address table

hash prefix

3

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

32343 El Said History 60000

3
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Other Dynamic Hashing Schemes
• Dynamic hashing (Larson, 1978): precursor to extendible 

hashing with the main difference in the organization of the 
directory with tree-structured directory with internal 
nodes and leaf nodes 

• Linear hashing (Litwin, 1980): allows incremental growth 
without needing a directory at the cost of more bucket 
overflows
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Dynamic Hashing Properties
• Benefits 

• Hash performance does not degrade with growth of 
file 

• Minimal space overhead 

• Disadvantages 

• Additional level of indirection on lookup (2 block access 
instead of one)
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Ordered Files vs Hashing
• Relative frequency of insertions and deletions 

• Ordered files are much more expensive to keep sorted 

• Cost of periodic re-organization in hashing 

• Is average access time more important than worst-case access 
time? 

• What types of queries are expected? 

• Hashing is good for equality 

• Ordered files are preferred if range queries are common
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Indexing: Recap
• Motivation for Index 

• Types of indexes 

• Dense vs sparse 

• Primary vs secondary vs clustering 

• Hash index file 

• Static vs dynamic


