Indexing: Overview & Hashing

CS 377: Database Systems

Recap: Data Storage

Data items
Records
Memory DBMS
Blocks blocks
Clog e dl— Different ways to organize files for

better performance
Disk

CS 377 [Spring 2016] - Ho

Motivation for Index

- Suppose we want to search for employees of a specific
age In our company datalbase with a relation:
SELECT * from Employee where age = 25;

- Simple scan: O(N) — inefficient to read all tuples to find
one

- |dea: Sort the records by age and we know how to do
this fast (several efficient algorithms such as merge sort,
heapsort, etc.)

- Binary search: O(logz N)

CS 377 [Spring 2016] - Ho

Motivation for Index (2)

- What if we want to be able to search quickly over multiple
attributes (e.g., not just age)?

dea: Keep multiple copies of the records, each sorted
Oy one attribute set — very expensive from a storage
nerspective

- Are there better techniques that allow better tradeoffs
between storage and query speed?

CS 377 [Spring 2016] - Ho

Indexes

Data structures that organize records via trees or hashing

-+ Speed up search for a subset of records based on
values in a certain field (search key)

- Any subset of the fields of the relation can be the
search field

-+ Search key need not be the same as the key!

- Contains a collection of data entries (each entry with
sufficient information to locate the records)

CS 377 [Spring 2016] - Ho

INndex Effect

Index maps the search key value to the list of blocks that
contains the search key value

searck
. All data blocks
ndex
ouiptii
b > —_—

¥

Blocks t’x{taim

search key value

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/intro.html
CS 377 [Spring 2016] - Ho

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/intro.html

INndex File

Stores records in the
following format:
Search Key | Block Ptr

Size of index file is much
smaller than size of a
data file

Allows you to |locate the
block that contains the
record quickly

CS 377 [Spring 2016] - Ho

ID#

NAME | ADDRESS A COURSE

LEVEL |

5701654

5701830

9702317

ID#

NAME

ADDRESS

COURSE

LEVEL

9702381

9701654

9702399

9702381

9703478

9703501

ID#

NAME

ADDRESS

COURSE

LEVEL |

| 9703501

9703569

9502318

9801220

9303791

ID#

NAME | ADDRESS A COURSE

LEVEL

ock b-| 5502318

9502449

9803778

ID#

NAME

ADDRESS

COURSE

LEVEL

9803791

9303799

9503988

Dense vs Sparse Index

- Dense: one index entry for each search key value

-+ Sparse: index entries only for some of the search values

Sparse index
on uid

Dense index
on hame

CS 377 [Spring 2016] - Ho

Dense vs Sparse Index (2)

-+ Sparse:
- Less index space — may fit in memory (faster)
- Potentially more varied time to find a record within a block
- Easler update process
- Records must be clustered
- Dense:
- Can directly tell if a record exists without accessing file

- More index space

CS 377 [Spring 2016] - Ho

Primary Index

- Created for the primary key of a table

- Usually ordered index whose search key is the sort key
for the sequential file

- Jypically sparse index

- Binary search on the index file requires fewer block
accesses than on data file

CS 377 [Spring 2016] - Ho

xample: Primary Index

Figure 18.1

Primary index on the ordering key field of

the file shown in Figure 177.

Index file

(<K(i), P(i)> entries)

Block anchor
primary key

value pointer

Block

Aaron, Ed

(Primary
key field)

Name Ssn

Birth_date

Job

Salary

Sex

—————————® | Aaron, Ed

Abbot, Diane

Acosta, Marc | |

———— > | Adams, John

Adams, Robin

Akers, Jan | |

— | Alexander, Ed

Alfred, Bob

Allen, Sam | |

Adams, John

— | Allen, Troy

Alexander, Ed

Anders, Keith

Allen, Troy

Anderson, Zach

Anderson, Rob | I

Arnold, Mack

‘—> Anderson, Zach

Angel, Joe

Archer, Sue | |

— | Arnold, Mack

Arnold, Steven

Atkins, Timothy | |

CS 377 [Spring 2016] - Ho

Clustering Index

-+ Created on an ordered non-key field (not unique), known
as a cluster field

- One Index entry for each distinct value of the field

- Index entry points to the first data block that contains
records with that field value

- Insertion and deletion are relatively straightforward

CS 377 [Spring 2016] - Ho

Example: Clustering Index

(Clustering Data file
field)
Dept_number | Name | Ssn | Job |Birth_date | Salary

E— 1

e 1

1

2

Index file > 2

(<K(i), P(i)> entries) 3

3

Clustering Block 3

field value pointer

1 . — 3

2 . 3

3 ° 4

4 . 4

5 o

6 © |—> 5

8 o 5

5

5

L 6

6

6

6
— 6
Figure 18.2 8
A clustering index on the Dept_number ordering 8
nonkey field of an EMPLOYEE file. 8

CS 377 [Spring 2016] - Ho

Secondary Index

- An ordered index whose search key is not the sort key for
the sequential file

- Unigue non-ordering key field results in a dense index
with an entry for each record

- Not unigue fields results in an entry for each distinct
value (nondense index)

- Multiple secondary indexes for the same file

- Requires more space and longer search time

CS 377 [Spring 2016] - Ho

Example: Secondary Index (Dense

Index file Data file
(<K(i), P(i)> entries) Indexing field
(secondary
key field)
_ Index Blpck > 9
field value pointer >
- = 5
! - - 13
; : :
4 ¢ >
5 . - o
p . = 15
7 o = 3
8 . 17
> 21
9 ° - 11
10 . > 16
11 . 2
12 .
13 —e > 24
14 | > 10
15 i = 20
16 T 1
[
17 . - 4
18 - >~ 23
19 1 18
20 . 14
21 .
22 - > 12
23 . > 7
24 . B 19
22

CS 377 [Spring 2016] - Ho

Summary of Types of Indexes

Search key used for = Search key not used

ordering of file for ordering of file
Search key is key of Primary index — Secondary index (key)
relation sparse — dense

Secondary index
(honkey) — dense or
sparse

Search key is not key = Clustering index —
of relation sparse

CS 377 [Spring 2016] - Ho

Multi-level Index

What if index can’t fitin -~~~ == w7
memory”? A=
What if we want faster - N
search than loga(n)? = =

35 o— 39 36
55 . 44 o
39

Solution: An index file is — [
also a data file — create e
an index on the index file =
> 85 | — ::

L=

CS 377 [Spring 2016] - Ho

Example: Multi-level Index

Second level
i 10| 30
IS sparse /' T 2
p 30| -
sl 40 - 20
90 | T~ /0
50 -
\ 60 80
20 - 40
10d
10
First level is 20
60
dense

unordered file (according
to search key)

CS 377 [Spring 2016] - Ho

SQL Index

PRIMARY KEY declaration automatically creates a
orimary index

- UNIQUE key automatically creates a secondary index

- Additional secondary indexes can be created on non-key
attributes

CREATE INDEX <indexName> ON <Relation>(<attr>);

- Example: Company Database
CREATE INDEX employeeAgeldx ON Employee(Age);

CS 377 [Spring 2016] - Ho

Index Structures

+ Hash index
- Good for equality search

- In expectation: O(1) I/Os and CPU performance for
search and insert

- B+ tree index
-+ Good for range and equality search

- O(logr(N)) I/0O cost for search, insert, and delete

CS 377 [Spring 2016] - Ho

Hash Function

- A hash function, h, Is a function
which transforms a search key
from a set K, Into an index In a -
as

table of size n keys function hashes
h: K —> {O, 1, sy n_za n_1}

00
o
02

03

-+ Bucket is a location (slot) in the
bucket array (or the hash table)

05

15
- Different search keys can be
hashed into the same bucket

CS 584 [Spring 2016] - Ho

Hash Function Properties

- Minimize collisions (different hash keys should hash to
different values whenever possible)

- Uniform — each bucket is assigned the same number of
search key values from the set of all possible values

- Random — each bucket will have the same number of
records assigned to it irrespective of the actual
distribution of search-key values in the file

- Be easy and quick to compute

CS 584 [Spring 2016] - Ho

Hash Function Usage

- The mark of a computer scientist Is their belief in hashing

-+ Possible to insert, delete, and lookup items in a large
set in O(1) time per operation

- Widely used in a variety of applications

- Crytpography, table or datalbase lookup, caches for
large datasets, finding duplicate records, finding similar
“ltems”, etc.

CS 584 [Spring 2016] - Ho

Hash Index

- Hash function, h, distributes all search-key values to a
collection of buckets

—ach bucket contains a primary page plus overflow
nDages

- Buckets contain data entries

- Entire bucket has to be searched sequentially to locate
a record (since different search-key values may be
mapped to same bucket)

CS 584 [Spring 2016] - Ho

Example: Hash Index

Bucket 0 Emp_id Lastname Sex|

13646 S R A I

21124 ° > | 12676 Marcus M

..... — | 13646 Hanson M
Bucket1 | | 0 e gl

ucke > | 21124 Dunbhill M

23402 °

81165 * | 23402 Clarke F

——— > [34723 Ferragamo F

BUCket 2

51024 S —» | 41301 Zara F

12676 — [|| ..., ...

..... » | 51024 Bass M
Bucket 3 > 62104 England M

629104 e 1 i1 L. gl

719221 o—1 1 > | 71221 Abercombe F

..... » | 81165 Gucci F
Bucket 9

34723 el

41301 o

Figure 18.15
Hash-based indexing.

CS 377 [Spring 2016] - Ho

Bucket Overflows

- Causes of bucket overflows
- Insufficient buckets
-+ Skew in distribution of records
- Multiple records with the same search-key value
- Hash function produces non-uniform distribution

- Overflow chaining links the buckets together to handle
when a certain bucket has a large number of entries

CS 377 [Spring 2016] - Ho

Example: Overtlow Hash

Main buckets

Bucket 0 | 340
460
Record pointer
1 NULL
Overflow buckets
Bucket1 | 321 981 Record pointer
761 Record pointer 1 NULL
91 —»(182 Record pointer
Record pointer

Bucket 2 22 L 652 Record pointer i

79 Record pointer — NULL

522 Record pointer

Record pointer |——
. (Pointers are to records within the overflow blocks)

Bucket9 | 399
89

: Figure 17.10
Record pointer i Handling overflow for buckets

= NULL by chaining.

CS 377 [Spring 2016] - Ho

Hash Index Query

Compute hash value

h(x) Hash
X ™ | function —I--k{x)
Read the disk block /.
oo!nted {o by the block Scker Ay OVerflow pointer
nointer h(X) INtO memory a Array in memory (Disk blocks) ,'
K% bik ptr 0 ([key[P]key 2]l |
- h(x)"~ g — :
Linear search the epr 1. 1 [P T 4 em
bucket for x, ptr(x) R
‘mm |
Read into -
Use ptr(x) to access x e N AL
on disk

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/hashing.html
CS 377 [Spring 2016] - Ho

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/hashing.html

Hash Index Insert/Deletion

- Hash the new item h(x)
- FInd the hash bucket for the item
- Add/delete item from hash bucket

- |f there Is insufficient space, allocate an overflow
bucket and then add it to the overflow bucket

CS 377 [Spring 2016] - Ho

Example: Multi-level Index Insertion

+ Insert a tuple with value 35 in the search key

- \What do we need to do”?

-]

0] +—— %8 N
30| —

0] < T [30 -

60 \\ 35 .

40 -

50 N

60 .

CS 377 [Spring 2016] - Ho

Example: Multi-level Index Insertion

+ Insert a tuple with value 15 In the search key

- \What do we need to do”?

—

/]

10

10

-]

20

30

4>
—

40

30

—>

60

/[

50

§40

60

CS 377 [Spring 2016] - Ho

Redistribute
+ overflow

Potential Problems

What happens after many insertions?

!

&)

—

T
—)

Main index
10 T
20 1, 39
] 5
33 / 32
40 [——
50 1
60 1 32
38
34
/0 g
30 —1
90 1

CS 377 [Spring 2016] - Ho

overflow pages
may not be
sequentiall

Static Hashing Issues

Databases grow and shrink with time, while static hashing
assumes a fixed set of B bucket addresses

- If initial number of buckets is too small, performance
will degrade due to too much overtflow

- |f space allocated for anticipated growth or database
shrinks, buckets will be underutilized and space will be
wasted

CS 377 [Spring 2016] - Ho

Fixing Static Hashing

-+ One solution: periodic re-organization of the file with new
hash functions

- Expensive — rehash all keys into a new table!
- Disrupts normal operations

+ Another (better) solution: dynamic hashing techniques
that allow size of the hash table to change with relative
low cost

CS 377 [Spring 2016] - Ho

Extendible Hashing (Fagin, 1979)

Main idea:
- Directory of pointers to the buckets

- Double the number of buckets by splitting just the
bucket that overflowed

- Directory is much smaller than file, so doubling it is
cheaper

CS 377 [Spring 2016] - Ho

Extendible Hashing Structure

Local depth of

Directory each bucket Data file buckets
000 o— | =3 Bucket for records
001 - whose hash values
start with 000
010 ®
011 ®
100 °
101 . d =3 Bucket for records
110 - whose hash values
start with 001
111 .
Global depth
d=3
- ,
e d= Bucket for records
whose hash values
start with 01
L =
»| d = Bucket for records
whose hash values
start with 10
——» d'=3 Bucket for records
whose hash values
start with 110
————»| d' =3 Bucket for records
Figure 17.11 whose hash values

start with 111

Structure of the
extendible hashing
scheme.

CS 377 [Spring 2016] - Ho

Example: Extendible Hashing Structure

Instructor(ID, Lname, Department, Salary)
and we want to builld a secondary index on the
department attribute

of leading bits of the hash
hash prefix

bucket address table bucket 1

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/PPT-dir/ch11.ppt
CS 377 [Spring 2016] - Ho

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/PPT-dir/ch11.ppt

Example: Extendible Hashing Structure (2)

Insert 3 new tuples: (15151, Mozart, Music, 40000),
(10101, Srinivasan, Comp. Sci, 90000),
(12121, Wu, Finance, 90000)

hash prefix
1 1

1l __— ">|15151|Mozart |Music |40000

bucket addressN |
10101 |Srinivasan{Comp. Sci.{ 90000

12121 (Wu Finance 90000

CS 377 [Spring 2016] - Ho

Example: Extendible Hashing Structure (3)

Insert new tuple Einstein whose first 1 bit hash
matches the 2nd bucket and overflows => increase

the hash prefix and have the new bucket

hash prefix
2

1

% 15151|Mozart | Music [40000

—

-~

12121 Wu Finance |90000
22222| Einstein | Physics | 95000

bucket address table

2

10101|Srinivasan Comp. Sci.| 65000

CS 377 [Spring 2016] - Ho

Example: Extendible Hashing Structure (4)

1
15151 | Mozart | Music 40000
hash prefix
3
— 3
— 22222 | Einstein | Physics 95000
— 33456 | Gold Physics 87000
3
| /12121 Wu Finance 90000
R 3
bucket address table 32343 | Fl1Said | History 60000
3
10101 |Srinivasan| Comp. Sci. | 65000
45565 |Katz Comp. Sci. | 75000

CS 377 [Spring 2016] - Ho

Other Dynamic Hashing Schemes

- Dynamic hashing (Larson, 1978): precursor to extendible
hashing with the main difference in the organization of the
directory with tree-structured directory with internal
nodes and leaf nodes

- Linear hashing (Litwin, 1980): allows incremental growth
without needing a directory at the cost of more bucket
overflows

CS 377 [Spring 2016] - Ho

Dynamic Hashing Properties

- Benefits

+ Hash performance does not degrade with growth of
file

- Minimal space overhead
- Disadvantages

- Additional level of indirection on lookup (2 block access
iInstead of one)

CS 377 [Spring 2016] - Ho

Ordered Files vs Hashing

- Relative frequency of insertions and deletions
- Ordered files are much more expensive to keep sorted
- Cost of periodic re-organization in hashing

|s average access time more important than worst-case access
time?

- What types of queries are expected”?
-+ Hashing is good for equality
- Ordered files are preferred if range queries are commaon

CS 377 [Spring 2016] - Ho

Indexing: Recap

- Motivation for Index
- Types of indexes

+ Dense vs sparse

- Hash index file

- Static vs dynamic

CS 377 [Spring 2016] - Ho

