
Indexing: Overview & Hashing
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

Recap: Data Storage

Memory DBMS

blocks

Data items

Records

Blocks

Files

Disk

Different ways to organize files for
better performance

CS 377 [Spring 2016] - Ho

Motivation for Index
• Suppose we want to search for employees of a specific

age in our company database with a relation:  
SELECT * from Employee where age = 25;

• Simple scan: O(N) — inefficient to read all tuples to find
one

• Idea: Sort the records by age and we know how to do
this fast (several efficient algorithms such as merge sort,
heapsort, etc.)

• Binary search: O(log2 N)

CS 377 [Spring 2016] - Ho

Motivation for Index (2)
• What if we want to be able to search quickly over multiple

attributes (e.g., not just age)?

• Idea: Keep multiple copies of the records, each sorted
by one attribute set — very expensive from a storage
perspective

• Are there better techniques that allow better tradeoffs
between storage and query speed?

CS 377 [Spring 2016] - Ho

Indexes
• Data structures that organize records via trees or hashing

• Speed up search for a subset of records based on
values in a certain field (search key)

• Any subset of the fields of the relation can be the
search field

• Search key need not be the same as the key!

• Contains a collection of data entries (each entry with
sufficient information to locate the records)

CS 377 [Spring 2016] - Ho

Index Effect
Index maps the search key value to the list of blocks that
contains the search key value

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/intro.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/intro.html

CS 377 [Spring 2016] - Ho

Index File
• Stores records in the

following format:  
Search Key | Block Ptr

• Size of index file is much
smaller than size of a
data file

• Allows you to locate the
block that contains the
record quickly

CS 377 [Spring 2016] - Ho

Dense vs Sparse Index
• Dense: one index entry for each search key value

• Sparse: index entries only for some of the search values

CS 377 [Spring 2016] - Ho

Dense vs Sparse Index (2)
• Sparse:

• Less index space — may fit in memory (faster)

• Potentially more varied time to find a record within a block

• Easier update process

• Records must be clustered

• Dense:

• Can directly tell if a record exists without accessing file

• More index space

CS 377 [Spring 2016] - Ho

Primary Index
• Created for the primary key of a table

• Usually ordered index whose search key is the sort key
for the sequential file

• Typically sparse index

• Binary search on the index file requires fewer block
accesses than on data file

CS 377 [Spring 2016] - Ho

Example: Primary Index

CS 377 [Spring 2016] - Ho

Clustering Index
• Created on an ordered non-key field (not unique), known

as a cluster field

• One index entry for each distinct value of the field

• Index entry points to the first data block that contains
records with that field value

• Insertion and deletion are relatively straightforward

CS 377 [Spring 2016] - Ho

Example: Clustering Index

CS 377 [Spring 2016] - Ho

Secondary Index
• An ordered index whose search key is not the sort key for

the sequential file

• Unique non-ordering key field results in a dense index
with an entry for each record

• Not unique fields results in an entry for each distinct
value (nondense index)

• Multiple secondary indexes for the same file

• Requires more space and longer search time

CS 377 [Spring 2016] - Ho

Example: Secondary Index (Dense)

CS 377 [Spring 2016] - Ho

Summary of Types of Indexes

Search key used for
ordering of file

Search key not used
for ordering of file

Search key is key of
relation

Primary index —
sparse

Secondary index (key)
— dense

Search key is not key
of relation

Clustering index —
sparse

Secondary index
(nonkey) — dense or

sparse

CS 377 [Spring 2016] - Ho

Multi-level Index
• What if index can’t fit in

memory?

• What if we want faster
search than log2(n)?

• Solution: An index file is
also a data file — create
an index on the index file

CS 377 [Spring 2016] - Ho

Example: Multi-level Index

50
30

70
20

40
80

10
100

60
90

10
20
30
40

50
60
70
...

10
50
90
...

First level is
dense

Second level
is sparse

unordered file (according
to search key)

CS 377 [Spring 2016] - Ho

SQL Index
• PRIMARY KEY declaration automatically creates a

primary index

• UNIQUE key automatically creates a secondary index

• Additional secondary indexes can be created on non-key
attributes 
CREATE INDEX <indexName> ON <Relation>(<attr>);

• Example: Company Database  
CREATE INDEX employeeAgeIdx ON Employee(Age);

CS 377 [Spring 2016] - Ho

Index Structures
• Hash index

• Good for equality search

• In expectation: O(1) I/Os and CPU performance for
search and insert

• B+ tree index

• Good for range and equality search

• O(logF(N)) I/O cost for search, insert, and delete

CS 584 [Spring 2016] - Ho

Hash Function
• A hash function, h, is a function

which transforms a search key
from a set K, into an index in a
table of size n 
h: K —> {0, 1, …, n-2, n-1}

• Bucket is a location (slot) in the
bucket array (or the hash table)

• Different search keys can be
hashed into the same bucket

CS 584 [Spring 2016] - Ho

Hash Function Properties
• Minimize collisions (different hash keys should hash to

different values whenever possible)

• Uniform — each bucket is assigned the same number of
search key values from the set of all possible values

• Random — each bucket will have the same number of
records assigned to it irrespective of the actual
distribution of search-key values in the file

• Be easy and quick to compute

CS 584 [Spring 2016] - Ho

Hash Function Usage
• The mark of a computer scientist is their belief in hashing

• Possible to insert, delete, and lookup items in a large
set in O(1) time per operation

• Widely used in a variety of applications

• Crytpography, table or database lookup, caches for
large datasets, finding duplicate records, finding similar
“items”, etc.

CS 584 [Spring 2016] - Ho

Hash Index
• Hash function, h, distributes all search-key values to a

collection of buckets

• Each bucket contains a primary page plus overflow
pages

• Buckets contain data entries

• Entire bucket has to be searched sequentially to locate
a record (since different search-key values may be
mapped to same bucket)

CS 377 [Spring 2016] - Ho

Example: Hash Index

CS 377 [Spring 2016] - Ho

Bucket Overflows
• Causes of bucket overflows

• Insufficient buckets

• Skew in distribution of records

• Multiple records with the same search-key value

• Hash function produces non-uniform distribution

• Overflow chaining links the buckets together to handle
when a certain bucket has a large number of entries

CS 377 [Spring 2016] - Ho

Example: Overflow Hash

CS 377 [Spring 2016] - Ho

Hash Index Query
• Compute hash value

h(x)

• Read the disk block
pointed to by the block
pointer h(x) into memory

• Linear search the
bucket for x, ptr(x)

• Use ptr(x) to access x
on disk

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/hashing.html

http://www.mathcs.emory.edu/~cheung/Courses/554/Syllabus/3-index/hashing.html

CS 377 [Spring 2016] - Ho

Hash Index Insert/Deletion
• Hash the new item h(x)

• Find the hash bucket for the item

• Add/delete item from hash bucket

• If there is insufficient space, allocate an overflow
bucket and then add it to the overflow bucket

CS 377 [Spring 2016] - Ho

Example: Multi-level Index Insertion
• Insert a tuple with value 35 in the search key

• What do we need to do?

20
10

30

50
40

60

10
30
40
60 35

CS 377 [Spring 2016] - Ho

Example: Multi-level Index Insertion
• Insert a tuple with value 15 in the search key

• What do we need to do?

10

30

50
40

60

10
30
40
60

15 20
Redistribute
+ overflow

CS 377 [Spring 2016] - Ho

Potential Problems
• What happens after many insertions? 

10
20
30

40
50
60

70
80
90

39
31
35
36

32
38
34

 33

Main index

overflow pages
may not be
sequential!

CS 377 [Spring 2016] - Ho

Static Hashing Issues
Databases grow and shrink with time, while static hashing
assumes a fixed set of B bucket addresses

• If initial number of buckets is too small, performance
will degrade due to too much overflow

• If space allocated for anticipated growth or database
shrinks, buckets will be underutilized and space will be
wasted

CS 377 [Spring 2016] - Ho

Fixing Static Hashing
• One solution: periodic re-organization of the file with new

hash functions

• Expensive — rehash all keys into a new table!

• Disrupts normal operations

• Another (better) solution: dynamic hashing techniques
that allow size of the hash table to change with relative
low cost

CS 377 [Spring 2016] - Ho

Extendible Hashing (Fagin, 1979)
Main idea:

• Directory of pointers to the buckets

• Double the number of buckets by splitting just the
bucket that overflowed

• Directory is much smaller than file, so doubling it is
cheaper

CS 377 [Spring 2016] - Ho

Extendible Hashing Structure

CS 377 [Spring 2016] - Ho

Example: Extendible Hashing Structure

0 0

bucket 1bucket address table

hash prefix

of leading bits of the hash

Instructor(ID, Lname, Department, Salary) 
and we want to build a secondary index on the

department attribute

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/PPT-dir/ch11.ppt

http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/PPT-dir/ch11.ppt

CS 377 [Spring 2016] - Ho

Example: Extendible Hashing Structure (2)
Insert 3 new tuples: (15151, Mozart, Music, 40000),  

(10101, Srinivasan, Comp. Sci, 90000),  
(12121, Wu, Finance, 90000)

1 1

bucket address table

hash prefix

1

15151 Music 40000

10101
12121

Srinivasan 90000
Wu 90000

Mozart

Comp. Sci.
Finance

CS 377 [Spring 2016] - Ho

Example: Extendible Hashing Structure (3)
Insert new tuple Einstein whose first 1 bit hash

matches the 2nd bucket and overflows => increase
the hash prefix and have the new bucket

2 1

2

2

bucket address table

hash prefix

15151 Music 40000Mozart

12121 Finance 90000Wu

10101 Comp. Sci. 65000Srinivasan

22222 Einstein Physics 95000

CS 377 [Spring 2016] - Ho

Example: Extendible Hashing Structure (4)

3

1

3

3

bucket address table

hash prefix

3

22222
33456

Physics 95000
Physics 87000

Music15151 40000Mozart

Einstein
Gold

12121 Wu 90000Finance

10101
45565

Srinivasan
Katz

Comp. Sci.
Comp. Sci. 75000

65000

32343 El Said History 60000

3

CS 377 [Spring 2016] - Ho

Other Dynamic Hashing Schemes
• Dynamic hashing (Larson, 1978): precursor to extendible

hashing with the main difference in the organization of the
directory with tree-structured directory with internal
nodes and leaf nodes

• Linear hashing (Litwin, 1980): allows incremental growth
without needing a directory at the cost of more bucket
overflows

CS 377 [Spring 2016] - Ho

Dynamic Hashing Properties
• Benefits

• Hash performance does not degrade with growth of
file

• Minimal space overhead

• Disadvantages

• Additional level of indirection on lookup (2 block access
instead of one)

CS 377 [Spring 2016] - Ho

Ordered Files vs Hashing
• Relative frequency of insertions and deletions

• Ordered files are much more expensive to keep sorted

• Cost of periodic re-organization in hashing

• Is average access time more important than worst-case access
time?

• What types of queries are expected?

• Hashing is good for equality

• Ordered files are preferred if range queries are common

CS 377 [Spring 2016] - Ho

Indexing: Recap
• Motivation for Index

• Types of indexes

• Dense vs sparse

• Primary vs secondary vs clustering

• Hash index file

• Static vs dynamic

