Final Review

CS 377: Database Systems

[ogistics

+ April 29th, 8:00 -10:30 AM

- 3 single-sided handwritten cheat sheets

- Comprehensive covering everything up to current class
- Focus slightly more on the latter part of the course

-+ Should still study the first half material

DISCLAIMER: Concepts/topics not covered in this
review does not mean it will not appear on the test!

CS 377 [Spring 2016] - Ho

lazza Poll Results

A total of 34 vote(s) in 149 hours

14 (41% of users) Database Design & Normalization

5 (15% of users) Data Storage

21 (62% of users) Indexing

30 (88% of users) Query Processing & Optimization

17 (50% of users) Transaction Management & Concurrency Control

6 (18% of users) PHP

4 (12% of users) Big Data Systems

3 (9% of users) NoSQL

CS 377 [Spring 2016] - Ho

Database Design & Normal Forms

CS 377 [Spring 2016] - Ho

Normalization & Functional Dependencies

- Normal form: set of properties that relations must satisfy
- Relations exhibit less anomalies
+ Successively higher degrees of stringency

- Functional dependencies: X —>Y
- Constraint between two sets of attributes

- “Good” FDs are keys

CS 377 [Spring 2016] - Ho

Normalization Steps

- FInd all keys of a relation: heuristic #1 or #2
+ Find which FDs violate the normal form
- Break the relation into two or more relations
+ Use closure set of FD
- Follow lossless decomposition lemmas

- Repeat FD violation step

CS 377 [Spring 2016] - Ho

Summary of TNF, 2NF, SNF

Normal Form

TNF

2NF

SNF

BCNF

Relation should have no multi-
valued attributes or nested
relations

For relations where primary key
contains multiple attributes, no
nonkey attribute should be
functionally dependent on a part of
the primary key

Relation should not have a nonkey
attribute functionally determined
by another nonkey attribute

Relation should not have an
attribute functionally determined
by another nonkey attribute

Normalization (Remedy)

Form new relation for each
multivalued attribute or nested
relation

Decompose and set up a new
relation for each partial key with its
dependent attributes using lossless
decomposition

Decompose and set up a relation
that includes the nonkey
attribute(s) that functionally
determine(s) other nonkey
attributes

Decompose and set up a relation
that includes the nonkey
attribute(s) that functional
determine(s) other attributes

CS 377 [Spring 2016] - Ho

Exercise: Normalization

Suppose we have a relation R with four attributes A, B, C, D with the
following functional dependencies:

- C—>D
- C—>A
- B—>C

- What are the candidate key(s)?
- What is the best normal form that R satisfies”?

- Decompose it into BCNF it is not BCNF

CS 377 [Spring 2016] - Ho

Data Storage

CS 377 [Spring 2016] - Ho

Data Store Overview

Data items

Records
Memory DBMS

Blocks blocks

Files

Disk

CS 377 [Spring 2016] - Ho

Files

Disk space is organized into files
Files consist of blocks (pages)
Blocks consist of records

Organization of records in files

Table 17.2 Average Access Times for a File of b Blocks under Basic File Organizations

Average Blocks to Access

I_l Type of Organization Access/Search Method a Specific Record

e a p Heap (unordered) Sequential scan (linear search) b/2
Ordered Sequential scan b/2
Ordered Binary search log, b

Ordered (sequential)

CS 377 [Spring 2016] - Ho

Indexing: Hashing & B*-Iree

CS 377 [Spring 2016] - Ho

Indexes

Data structures that organize records via trees or hashing

-+ Speed up search for a subset of records based on
values in a certain field (search key)

- Any subset of the fields of the relation can be the
search field

-+ Search key need not be the same as the key!

- Contains a collection of data entries (each entry with
sufficient information to locate the records)

CS 377 [Spring 2016] - Ho

Hash Index

Hash function, h, distributes all
search-key values to a collection of
buckets

Each bucket contains a primary
page plus overtlow pages

Buckets contain data entries

Entire bucket has to be searched
sequentially to locate a record

(since different search-key values
may be mapped to same bucket)

\/ Y Yy v l { { Y { Y

CS 584 [Spring 2016] - Ho

Emp_id Lastnam Sex|
12676 Marcus v
13646 Hanso Y
21124 Dunhil v
23402 Clarke F
34723 Foragamo | F
41301 Zara_ F
51024 Bass Y
62104 England Y
71221 Abercombe | F
1165 Gucei F

Extendible Hashing Structure

I\/l al n I d ea 0 Dire ::gﬁlt?uecT:tOf Data file buckets

irectory

000 °——>I d=3 Bucket for records
o whose hash values
001 start with 000
' ' 010 ¢
Directory of pointers =
100 ®
to the buckets : EL provegieiy

110 - start with 001
111 L

Global depth
d=3

Double the number of BrE oot
ouckets by splitting
just the bucket that = S —
overflowed

start with 10

———»| d'=3 Bucket for records
whose hash values
start with 110

Directory iIs much
smaller than file, so e

Figure 17.11 whose hash values

dOUb“ﬂg |t |S Cheaper S)t(;:it:ﬁeo;;:smg start with 111

scheme.

CS 377 [Spring 2016] - Ho

Exercise: Extendible Hashing

Insert the following keys into an empty extendible hashing
structure where each bucket can hold up to 2 records and
you want to use the highest-bits (leftmost d bits)

-+ 2 [0010], 10 [1010], 7 [0111], 3 [0011], 5 [0101], 15
[1111]

CS 377 [Spring 2016] - Ho

Bt-Tree

Dynamic, multi-level tree
data structure

2 Rootnode
] |
- Adjusted to be height-
||| E'msteinl | Gold ||| | | |I|Srinivasan||| | | | | """ Internal nodes
balanced (all leaf nodes / \ \ \
-t d -t h) [,] Brandt | [catifieri] [crick [{>| [Einstein] [Etsaid[[[}>[] Gotd [[xatz [] kim [} [Mozart]] singh [[[J#],[Srinivasan| [wu [[] »
| » 10101 | Srinivasan | Comp. Sci. | 65000
»12121 | Wu Finance 90000
15151 | Mozart Music 40000
» 22222 | Einstein Physics 95000
+ Good performance
> 33456 | Gold Physics 87000
45565 | Katz Comp. Sci. 75000
> 58583 | Califieri History 60000
uarantee — sSupports T
76766 | Crick Biology 72000
» 83821 | Brandt Comp. Sci. | 92000
» 98345 | Kim Elec. Eng. 80000

efficient equality and
range SearCh Figure from Database System Concepts book

Widely used in DBMS

CS 377 [Spring 2016] - Ho

Exercise: B-[ree

19

33

I

14
2 3 5 7 || 14 || 16

24
>

19

20

22

24

27

29

33

34

38

39

Insert 17

Insert 35
- Delete 7
-+ Delete 14

CS 377 [Spring 2016] - Ho

Index Structures

+ Hash index
- Good for equality search

- In expectation: O(1) I/Os and CPU performance for
search and insert

- B+ tree index
-+ Good for range and equality search

+|/O cost is height of tree for search, insert, and delete

CS 377 [Spring 2016] - Ho

Query Processing & Optimization

CS 377 [Spring 2016] - Ho

Basic Steps in Query Processing

Parse and translate:
convert to RA query

Optimize RA query
pased on the different
nossible plans

—valuate the execution
nlan to obtain the
guery results

query |

query
output

parser and relational-algebra
translator expression

 execution plan
data statistics

about data

Figure 12.1 from Database System Concepts book

CS 377 [Spring 2016] - Ho

Query Optimization Heuristics (Logical)

Main heuristic: Favor operations that reduce the size of intermediate
results first

- Break conjunctive SELECT and move select operations as far
down tree as permitted

Rearrange leaf nodes so leaf nodes with most restrictive select
operations are executed first

- Combine cartesian product operation with a subsequent selection
operation into join operation

- Break down and move lists of projection attributes down the tree
as far as possible

CS 377 [Spring 2016] - Ho

Exercise: RA Query Transformation

Given three relations:

Course(cid, title, dname, credits)
Teaches(iid, cid, sid, semester, year)
Instructor(iid, name, dname, salary)

Query: Find the names of all instructors in the Music
department who have taught a course in 2009, along with

the titles of the courses that they taught
- What is the initial RA query?

- Transform the query into an “optimal® RA query

CS 377 [Spring 2016] - Ho

Cost-based Query Optimization

Estimate and compare the costs of executing a query using
different execution strategies and choose the strategy with the
lowest cost estimate

+ Disk I/0O cost

+ Storage cost

- Computation cost

- Memory usage cost

- Communication cost (distributed datalbases)

CS 377 [Spring 2016] - Ho

SELECT Algorithms

- Linear search: selection attribute i1s not ordered and no
INdex on attribute

- Binary search: selection attribute is ordered but no index

Index search: selection attribute has an index (primary or
secondary) that can possibly be used on the query

CS 377 [Spring 2016] - Ho

SELECT Algorithms Cost

Search Type

Linear
Binary

Primary index

Primary index
Primary index
Secondary index
Secondary index

Secondary index

Details
b,
logy b, | 4 [SC(att, 1)/ fr| =1
candidate key HT; +1
nonkey HT; + |SC(att, r)/ f]
comparison HT; + [c¢/f]
candidate key HT; +1
nonkey HT; + SC(att, 1)
comparison HT; + (LBic)/n, +c

CS 377 [Spring 2016] - Ho

Exercise: SELECT

Employee relation with clustering index on salary:
* Nemployee = 10,000 (10,000 tuples in employee)
* Pemployee = 2,000 (2,000 blocks)
- Secondary index (B*-Tree) on SSN (key attribute)
- HTI =4 levels

What algorithm would lbe used for the following query and why*?

0ssN=123456789 (EEmployee)

CS 377 [Spring 2016] - Ho

Exercise: SELECT

Same employee relation with clustering index on salary:
- Secondary index (B*-Tree) on DNO (non-key)
- HTi=2
- LBi =4 (4 first level index blocks)
- V(DNO, employee) = 125

What algorithm would lbe used for the following query and why*?

opNO>5(Employee)

CS 377 [Spring 2016] - Ho

External Sort Merge Algorithm

Sort r records, stored in b file blocks with a total memory
space of M blocks (relation is larger than memory)

19

Total cost:] [aE P [a]H
o el | o el
d| 31

2, ([logy_y (b,/M)1 +1) il [Eal) i |
e |16 e |16 5% |d[=
\ 122131;/232
: . m r |16 g | 24
NOTE: that the previous slides Al — I - ZE
(ecture 20) were off by a factor [l [€7- (B [
of 2 for the second part! dhion e v i

runs pass-1 pass—2

Figure 12.4 from Database System Concepts book
CS 377 [Spring 2016] - Ho

JOIN Algorithms

- Nested loop join: brute force algorithm and can be used with any join
condition

- Nested-block join: somewhat brute force except join one block at a
time together

Indexed nested loop join: index is available on inner loop’s join
attribute to compute the join

- Sort-merge join: sort relations and join, only used for equijoin and
natural join

- Hash-join: hash the relations and only join tuples in same bucket,
only used for equijoin and natural join

CS 377 [Spring 2016] - Ho

JOIN Algorithms Cost

Detalls

Cost

Type

Nested loop

Nested block
Indexed nested loop
Sort merge join

Hash join

Hash join

no recursive partitioning

recursive partitioning

nrbs + bp

brbs + br
brp + ngc

sort cost + br + bg

3br + 3bs

2(br + bs)[logy,_1(bs) — 1]
+ br + bg

if both fit In memory: br + bs

CS 377 [Spring 2016] - Ho

Exercise: JOIN Operation

Employee and Department
* Nemployee = 10,000 (10,000 tuples in employee)
* Demployee = 2,000 (2,000 blocks)
* Ndepartment = 125 (125 tuples in department)
* Dgepartment = 13 (13 blocks)

- Primary index dnumber in department with HTi = 1

+ Secondary index mgr_ssn in department with HTi = 2

CS 377 [Spring 2016] - Ho

Exercise: JOIN Operation (2)

Employee and Department

- What join algorithm makes sense for joining Employee
and Department on department number?

- What join algorithm makes sense for joining Employee
and Department on manager ssn”

CS 377 [Spring 2016] - Ho

Transaction Management &
Concurrency Control

CS 377 [Spring 2016] - Ho

ACID: Transaction Properties

- Atomicity: all actions in transaction happen or none
happen

-+ Consistency: a database in a consistent state will remain
IN a consistent state after the transaction

Isolation: the execution of one transaction iIs isolated from
other transactions

Durability: if a transaction commits, its effects must
oersist

CS 377 [Spring 2016] - Ho

Recovery via System Logs

l[dea: Keep a system log and perform recovering when
necessary

- Gont

dn O

ains log records that contains information about

peration performed by transaction

- Each transaction is assigned a unigue transaction ID to
different themselves

Write ahead logging (WAL): all modifications are written to

a log before they are applied to database

CS 377 [Spring 2016] - Ho

L.ogging

- Undo logging: undo operations for uncommitted
transactions to go back to original state of database

- Write data — add |write, T, X, old_value], after
successtul write to log, update X with new value

-+ Redo logging: save disk I/Os by deferring data changes
or do the changes for committed transaction

- Write data — add [write, T, X, new_value]|, after
successful write to log, update X with new value

CS 377 [Spring 2016] - Ho

Conflict

Pairs of consecutive actions such that if their order is
interchanged, the behavior of at least one of the
transactions can change

Involve the same database element

- At least one write

- Three types of conflict: read-write conflicts (RW), write-
read conflicts (WR), write-write conflicts (WW)

CS 377 [Spring 2016] - Ho

Serializability Definitions

- S1, S2 are conflict equivalent schedules if S1 can be
transformed into S2 by a series of swaps on Non-
conflicting actions

- A schedule is conflict serializable if it is conflict
equivalent to some serial schedule

- Maintains consistency & isolation!

CS 377 [Spring 2016] - Ho

Precedence (Serialization) Graph

- Graph with directed edges
- Nodes are transactions in S

- Edge is created from Tito 1] if one of the operations in
T1 appears before a contlicting operation in T]

-+ Schedule is serializable if and only if precedence graph
has no cycles!

CS 377 [Spring 2016] - Ho

Exercise: Serializability

Consider the schedule given in the table below of three
transactions 11, 12, and 13

time) to ty La t; g lr ls to Lo L1
T, R(A) W(A) R(C) W(C)

T, R(B) W(B)

T5; || R(A) | W(A) R(B) [W(B) | R(C) | W(C)

Draw the precedence graph

IS this schedule serializable?

CS 377 [Spring 2016] - Ho

Strict Two-phase Locking (Strict 2PL)

Each time you want to read/write an object, obtain a lock
(shared/exclusive) to secure permission to read/write object

-+ Only release locks at commit / abort time

- A transaction that writes will block all other readers until
the transaction commits or aborts

Ensure transactions remain isolated and follow serializable
schedules

Downside: not deadlock free

CS 377 [Spring 2016] - Ho

Big Data systems

CS 377 [Spring 2016] - Ho

Parallel/Distributed DBMS

- Data partitioned across multiple disks
- Allows parallel |/O for better speed-up

- Individual relational operations (e.g., sort, join, aggregation)
can be executed in parallel

+ Each processor can work independently on its own
partition

- Queries can be run in parallel with each other

- Concurrency control takes care of conflicts

CS 377 [Spring 2016] - Ho

Parallel Architectures

Share Share Share
Everything Disks Nothing

P Netwaork 1P Netwaork IP Network

LOCH
Storage

FC

eg. Unix FS eg. Oracle RAC eg. HDFS

http://image.slidesharecdn.com/hadooparchitecture-091019175427-phpapp01/95/big-data-
analytics-with-hadoop-18-638.jpg?cb=1411533606

CS 377 [Spring 2016] - Ho

http://image.slidesharecdn.com/hadooparchitecture-091019175427-phpapp01/95/big-data-analytics-with-hadoop-18-638.jpg?cb=1411533606

Parallel/Distributed DBMS |Issues

- How to distribute the data
- How to optimize the cost of queries

- Data transmission + local processing
- How to perform concurrency control

- How to make system resilient to fallures and achieve
atomicity & durabillity

CS 377 [Spring 2016] - Ho

‘MQGJQ@
maplhediuce

MapReduce

- Initially developed by Jeffrey Dean & Sanjay Ghemawat at
Google [2004]

- Open source implementation: Apache Hadoop

- High-level programming model and implementation for
large-scale parallel data processing

- Designed to simplity the task of writing parallel programs

CS 377 [Spring 2016] - Ho

MapReduce: Program

I I '

—

II |

I I P 2 ——

Map() Shuffle Reduce() http://blog.sqlauthority.com

https://erlerobotics.gitbooks.io/erle-robotics-python-gitbook-free/content/
caches, message queues, and map-reduce/mapreduce.jpg
CS 377 [Spring 2016] - Ho

https://erlerobotics.gitbooks.io/erle-robotics-python-gitbook-free/content/caches,_message_queues,_and_map-reduce/mapreduce.jpg

NoSQL

CS 377 [Spring 2016] - Ho

CAP Theorem

“Of three properties of shared-data systems — data
Consistency, system Availability, and tolerance to network
Partitions — only two can be achieved at any given moment in
time” — Brewer, 1999

+ Consistency: all nodes see the same data at the same time

- Avallabllity: guarantee that every request receives a
response about whether it was successful or failed

- Partition tolerance: system continues to operate despite
arbitrary message loss or failure of part of the system

CS 377 [Spring 2016] - Ho

ACID vs BASE

RDMS NoSQL
ACID CRUD
Atomic

: Basically Available
Consistent y

Soft state
Isolated <=:>

Eventually consistent
Durable

https://www.linkedin.com/pulse/rdbms-follows-acid-property-nosqgl-databases-base-does

CS 377 [Spring 2016] - Ho

https://www.linkedin.com/pulse/rdbms-follows-acid-property-nosql-databases-base-does

NoSQL Categories

-+ Key-value stores

- Column-based
families or wide
column systems

- Document stores

- Graph databases

Flavors of NoSQL

Key/Value Key/Value

Volatile Persistent Wide-Column Document

v

key value

123 123 Main St.
126 (805) 477-3900

...........

Y

(&)
OmONG
5

lynda.com

Graph

https://cdn.lynda.com/video/387725-179-635691101939114107_338x600_thumb.jpg

CS 377 [Spring 2016] - Ho

https://cdn.lynda.com/video/387725-179-635691101939114107_338x600_thumb.jpg

NoSQL Use Cases & Challenges

- When should | think of using NoSQL database”
- What are the advantages of using NoSQL"

- What are the disadvantages of using NoSQL?

CS 377 [Spring 2016] - Ho

