Datalbase Design Theory and
Normalization Part |l

CS 377

Recap: Last Class

Normal form: set of properties that relations must satistfy
Relations exhibit less anomalies

+ Successively higher degrees of stringency

TNF: most basic normal form with atomic attributes

Functional dependencies: X —>Y

- Armstrong’s axioms to derive additional FDs to find
good relational decompositions

CS 377 [Spring 2016] - Ho

FINding Keys of Relation R

- Bad news: find all keys of a relation is NP-complete

+ Running time of algorithm to solve the problem exactly is
exponentially increasing with the problem size

- Large NP-complete problems are difficult to solve!
- No efficient solution to find all the keys

- Brute force algorithm: Check every subset of attributes for super key
strategy — tests every possible solution

- Solution: use heuristics to find all the keys of a relation

- Turn towards closures to help us find keys in a relation

CS 377 [Spring 2016] - Ho

Attribute Closure Set

- [f X Is an attribute set, the closure X* is the set of all
attributes B such that X —> B

- XIS subset of X* since X —> X

- X" Includes all attributes that are functionally
determined from X

- Importance: If X* = R, then X is a superkey

- Closure can tell us if set of attributes X is a superkey

CS 377 [Spring 2016] - Ho

Example: Closure

Product(name, category, color, department, price)
* hame —> color
+ category —> department
- color, category —> price
- Attribute Closure:
Iname}” = {name, color}

{name, category}” = {name, color, category, department, price}

CS 377 [Spring 2016] - Ho

Finding a Key after Closure

- [f X* not equal to the relation, we must augment more
attributes to X to obtain a key

- [f X* =R, then X Is superkey — check for minimality
- Remove one or more attributes A
- Compute the closure of X - Ato see if (X - A)f =R

- Xisakey if (X-A)* not equal R for any attribute A

CS 377 [Spring 2016] - Ho

Closure Algorithm

- Input: A set F of FDs on a relation schema R, and a set of
attributes X, which is a subset of R

- Algorithm:
Initialize X* := X
repeat

old Xt := Xt

for each functional dependency ¥ —>Zin F
if Xt superset Y, then Xt := Xtunion Z
until (X* = old X*)

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm

EmpProj(SSN, FName, LName, PNo, PName, PLocation,
Hours)

- SSN —> FName, LName
- PNo —> PName, PLocation

- SSN, PNo —> Hours

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm (2)

- Initialize SSN™ := SSN
- Repeat loop (for each FD)

- SSN —> FName, LName
—> SSN" := SSN, FName, LName

- PNo —> PName, PLocation Since there were changes,
=> no change repeat another loop

. SSN. PNo —> Hours thlrough FDs, which results
—> no change In Nno changes => done

. Result;: SSN™ := SSN, FName, LName

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm (3)

- Initialize PNo™ := PNo
- Repeat loop (for each FD)

- SSN —> FName, LName

=> No change ,
Since there were

- PNo —> PName, PLocation changes,
=> PNo" := PNo, PName, PLocation repeat another loop

through FDs, which
results iIn Nno changes
=> done

- SSN, PNo —> Hours
=> No change

- Result;: PNo™ := PNo, PName, PLocation

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm (4)

- Initialize (SSN, PNo)" := SSN, PNo
- Repeat loop (for each FD)

- SSN —> FName, LName
=> (SSN, PNo)" := SSN, PNo, FName, LName

- PNo —> PName, PLocation
=> (SSN, F’No)+ = SSN, PNo, FName, LName, PName, PLocation

- SSN, PNo —> Hours
=> (SSN, F’No)+ = SSN, PNo, FName, LName, PName, PLocation, Hours

+ Result: (SSN, F’No)+ = SSN, PNo, FName, LName, PName, PLocation, Hours

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm (4)

- Summary of results:

+ SSN” := SSN, FName, LName

- PNo" := PNo, PName, PLocation

+ (SSN, PNo)" := SSN, PNo, FName, LName, PName, PLocation, Hours
- (SSN, PNo) is a superkey!
-+ (SSN, PNo) is minimal superkey

- {(SSN, PNo) - (SSN)}" = (PNo)"

- {(SSN, PNo) - (PNo)}” = (SSN)”

CS 377 [Spring 2016] - Ho

FINding Keys: Heuristic 1

- Increase/decrease until you find keys

- Step 1: Compute closure of all functional dependencies in
I:

- Step 2

- |f deficient, then add missing attributes to the LHS until
the closure is equal to the relation

- |f sufficient, then remove extraneous attributes from the
L HS until set is minimal

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 1

- RA,B,C,D, E, F)
- A—>B,C
- B,D—>FEF
- F—>A
- Step 1: Closure of all functional dependencies
- A"=A,B,C
- B,D)"=A,B,C,D,E,F

- FF=F A, B, C

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 1 (2)

- Step 2: Insert / remove attributes
- A" =A, B, C — insufficient so add
- AddD: (A,D)"=A,B,C,D, E, F —> key!
- AddE:(AE)"=A,B,C, E
- AddF: (A, F)"=A,B,C, F
- AddE, F: (A,E,F)"=A,B,C, E, F

- NoO more so done

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 1 (3)

- Step 2: Insert / remove attributes
- (B, D)f=A, B, C, D, E, F — sufficient so try deleting
+ Delete B: (D) =D
- Delete D: (B)* =B
- No more so done

B, D is minimal and thus a key!

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 1 (4)

- Step 2: Insert / remove attributes
- F*=F A, B, C — insufficient so add
- Add D: (D, F)*=A,B,C, D, E, F —> key!
- AddE: (E,F)*=A,B,C,E, F
- No more so done

Keys are: (A, D), (B, D), and (D, F)!

CS 377 [Spring 2016] - Ho

FINnding Keys: Heuristic 2

* FINnd necessary attributes first
- FInd the irreplaceable attributes

- Attribute is replaceable if it appears in the RHS of
some functional dependency

- A key must include every irreplaceable attribute
- Base set Is set of all irreplaceable attributes

- Add other attributes to base set until you have a key

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 2

- RA,B,C,D, E, F
- A—>B,C
- B,D—>E,F
- F—>A

- Step 1: Find irreplaceable attributes and construct base
set
Base set = {D}

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 2 (2)

- Step 2: Add other attributes until you have key
- Add A: (A,D)"=AB,C,D, E, F —> key!
- AddB: (B,D)"=A,B,C, D, E, F —> key!
- Add C: (C,D)*=C, D
- Add E: (D, E)*=D, E

. AddF:(D,F*=A B, C,D,EF —>key

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 2 (3)

- Step 2: Add other attributes until you have key (do not
expand known keys)

. AJdC:(C,D,E)*=C, D, E

- No more to add, so done!

CS 377 [Spring 2016] - Ho

Second Normal Form (2NF)

- (Definition) A
porime attribut

relation schema R is In 2NF if every non-
e (l.e., not a member of any candidate key)

A In R Is not

- Relation is

oartially dependent on any key of R

1NF (attributes are atomic)

- No non-key attribute that is functionally determined by

only a (proper) subset of a key
A B C D E F G H
key | !
(A, B, C) B —> F means F is functionally dependent on

subset of key => violation of 2NF

CS 377 [Spring 2016] - Ho

2NF Meaning

A relation that violates 2NF contains another embedded
autonomous entity

A B

@
O
I
T
0,
L

| !

embedded
entity

oy
T

CS 377 [Spring 2016] - Ho

Example: Violation of 2Nk

- EmpProj(SSN, FName, LName, PNo, PName, Hours)
- SSN —> FName, LName
- PNo —> PName
- SSN, PNo —> Hours

- FName is not part of any key

- SSN is (proper) subset of a key

- Violation since Employee entity is embedded (SSN, FName, LName)

CS 377 [Spring 2016] - Ho

Decomposition for Normal Form Violations

- Break a relation into two or more relations

+ One possibility for EmpProj(SSN, FName, LName, PNo, PName,
Hours):

- R1(PNo, PName, Hours)

- R2(SSN, FName, Lname)

Are these good or bad

- Another possibility for EmpProj decompositions?

- R3(SSN, FName, Lname)

- R4(SSN, PNo, PName, Hours)

CS 377 [Spring 2016] - Ho

Decomposition Effect

Populate the new relations using data of the original
relation

- Achieve this by using projection operation on the
original relation

Example:

R1 = TTSSN ., FName,LName (EmpPrOJ)

R2 = TTPNo,PName,Hours (EmpProj)

CS 377 [Spring 2016] - Ho

Decomposition Effect (2)

-+ Can we obtain the same information stored in the original
relation??

- Reconstruction algorithm:
f(RINR2 # 0){
reconstruction = R1 * R2 // Natural join

} else {
reconstruction = R1 x R2 // Cartesian product

}

CS 377 [Spring 2016] - Ho

Example: Decomposition Effect

SSN FName LName PNo PName Hours
111-11-1111 | John Smith pj1 ProjectX 20
111-11-1111 | John Smith Pj2 ProjectY 10
333-33-3333 | Jack Rabbit oJi ProjectX 5

<

SSN FName LName PNo PName Hours
111-11-1111 | John | Smith pi ProjectX 20
333-33-3333 | Jack | Rabbit p)2 ProjectY 10

oJi ProjectX 5

CS 377 [Spring 2016] - Ho

Example: Reconstructing After Decomposition

SSN EName LName PNo PName Hours

_ oJi ProjectX 20

111-11-1111 | John Smltr.] 0i2 ProjectY 10

333-33-3333 | Jack Rabbit 0j ProjectX 5

SSN FName | Name PNo PName Hours

-11- John Smith pj1 ProjectX 20
-11- John Smith Dj2 ProjectY 10
-11- John Smith pj1 ProjectX 5
333-33-3333 | Jack Rabbit pj1 ProjectX 20
333-33-3333 | Jack Rabbit Dj2 ProjectY 10
333-33-3333 | Jack Rabbit oJi ProjectX 5

Extraneous tuples that weren’t present in original relation!

CS 377 [Spring 2016] - Ho

Decomposition Relation Requirements

Must be able to obtain all tuples in the original relation R
using the reconstruction algorithm

Missing tuples means that we have lost information
which Is unacceptable

Must not obtain extraneous tuples that were not present
INn the original relation R using the reconstruction algorithm

Invalid information in the relation which is also
unacceptable

CS 377 [Spring 2016] - Ho

L ossless Decomposition

- A decomposition of relation R into 2 relations R1 and R2
IS called lossless if and only if
content(R1) * content(R2) = content(R) or
content (R1) x content(R2) = content(R)

-+ 2 lemmas that provide needed guidelines to decompose
R to guarantee lossless

- Lemma 1: content(R) C content(R;) * content(Rs)

- Lemma 2: If either R1 N Ry — R1 or R1 N Ry — Roy,
then content(R) = content(R;) * content(Rs)

CS 377 [Spring 2016] - Ho

Example: 2NF via Lemma 2

- EmpProj(SSN, FName, LName, PNo, PName, Hours)
- SSN —> FName, LName
- PNo —> PName
- SSN, PNo —> Hours

- At least one violating FD Remove all attributes

functionally dependent
on SSN => compute
. QSN —> | Name closure of SSN

- SSN —> FName

CS 377 [Spring 2016] - Ho

Example: 2NF via Lemma 2 (2)

- R1(SSN) = R1(SSN, FName, LName)
- R2(R - R1) = R2(PNo, PName, Hours)

+ To satisfy lemma 2, add SSN to R2 =>
R2(SSN, PNo, PName, Hours)

- R1 NR2 =SSN, and SSN —> R1

Are R1 and R2 in the 2NF?

CS 377 [Spring 2016] - Ho

Example: 2NF via Lemma 2 (3)

- R1(SSN, FName, LName)
- SSN —> FName, FName — key = good dependency

- R2(5SN, PNo, PName, Hours)

- SSN, PNo —> Hours — key = good dependency

- PNo —> PName — not key = bad!

Remove all attributes functionally dependent
on PNo => compute closure of PNo

CS 377 [Spring 2016] - Ho

Example: 2NF via Lemma 2 (4)

- R21(PNo*) = R21(PNo, PName)
- R22(R2 - R21) = R22(SSN, Hours)

- To satisfy lemma 2, add PNo to R22 =>
R22(SSN, PNo, Hours)

+ Resulting decomposition:
R1(SSN, FName, LName)
R21(PNo, PName)
R22(SSN, PNo, Hours)

Are R1, R21, and R22
N the 2NF?

CS 377 [Spring 2016] - Ho

Example: 2NF Complaint

- Employee2(SSN, FName, LName, DNo, DName, MgrSSN)
- SSN —> FName, LName, DNo
- DNo —> DName, MgrSSN

- Employee? is 2NF as DNo is not a subset of any key and neither of the functional
dependencies violate 2NF criteria

- But...
- Insert anomaly — adding new department results in NULL values
- Delete anomaly — deleting an employee may delete information about department
- Update anomaly — changing department name results in updates of multiple

tuples

CS 377 [Spring 2016] - Ho

Transitive Functional Dependency

A functional dependency A —> B Is a transitive functional
dependency Iin relation R if there is a set of attributes X
such that:

- A—>X

- X —>1B

- XIS not a super key

CS 377 [Spring 2016] - Ho

Third Normal Form (3NF)

(Definition) A relation schema R is in 3NF if, whenever a
nontrivial functional dependency X —> A holds in R, either
(@) X'is a super key of R, or (b) A is a prime attribute of R

- Risin 2NF

- Every non-key attribute is non-transitively dependent
on all the keys

A B C D E F G H
key (A, B, C) T | t
| fE —> G, then transitive
dependency

CS 377 [Spring 2016] - Ho (A, B, C) —> E —> G

Example: SNF Violation

- Employee2(SSN, FName, LName, DNo, DName,
MgrSSN)

- SSN —> FName, LName, DNo
- DNo —> DName, MgrSSN

-+ Since DNo is not a super key, there is a transitive
dependency SSN —> DNo —> DName, MgrSSN

CS 377 [Spring 2016] - Ho

Simpler Form of SNF

-+ Arelation R is SNF if and only if for every functional dependency
X —> B in relation R, one of the following must be true:

-+ XIS a superkey, or
- B s a key attribute (part of some key)

- Violation detection: Check every functional dependency X —> B
for:

- B Is a non-key attribute, and

X IS not a superkey

CS 377 [Spring 2016] - Ho

Example: SNF Violation Take 2

Employee2(SSN, FName, LName, DNo, DName, MgrSSN)

- SSN —> FName, LName, DNo
- FName, LName, and DNO are non-key attributes => YES
- SSN is not superkey => NO
- FD is good

- DNo —> DName, MgrSSN
- Name and MgrSSN are non-key attributes => YES
- DNo is not superkey => YES

- FD is bad and a 3NF violation

CS 377 [Spring 2016] - Ho

Example: SNF Decomposition

+ Solution: remove the violation by removing X* from the
original relation

- RA,B,C,D, E, F
- A—>B,C,D
- D—>EF
- Step 1: Find all keys

- A=A, B,C, D, E, F

CS 377 [Spring 2016] - Ho

Example: SNF Decomposition (2)

- Step 2: Is R 2NF7?
- Key(s): A
- Non-key attributes: B, C, D, E, F

- Is any of the non-key attributes functionally dependent
on subset of (A)? NO

- Relation is 2NF

CS 377 [Spring 2016] - Ho

Example: SNF Decomposition (3)

- Step 3: Is R 3NF?
- Key(s): A
- Non-key attributes: B, C, D, E, F

- Is any of the non-key attributes functionally dependent
on attributes that are not super key”? YES!

- D —>E, Fwhere D is not a superkey

CS 377 [Spring 2016] - Ho

Example: SNF Decomposition (4)

-+ Step 4: Extract offending functional dependence

. D*=(D, E, F)
. R1(D, E, F
2(A, B, C, D)

- Step 5: Check the new relations if they are SNF?
- R1: D —> E, F doesn’t violate 3NF criteria

- R2: A —> B, C, D doesn’t violate 3NF criteria

CS 377 [Spring 2016] - Ho

Summary of 1NF, 2NF, 3NF

Normal Form Normalization (Remedy)

Relation should have no Form new relation for each

1NF multi-valued attributes or multivalued attribute or nested
nested relations relation
For relations where primary
key contains multiple Decompose and set up a new

ONF attributes, no nonkey relation for each partial key
attribute should be with its dependent attributes
functionally dependent on a using lossless decomposition
part of the primary key
Relation should not have a Decqmpose .and set up a
nonkey attribute functionall relation that includes the

3NF Y y nonkey attribute(s) that

determined by another

nonkey attribute functionally determine(s) other

nonkey attributes

CS 377 [Spring 2016] - Ho

Boyce-Codd Normal Form (BCNF)

(Definition) A relation schema R is in BCNF if whenever a nontrivial
functional dependency X —> A holds in R, then X is a superkey of R

- Difference from SNF: SNF allows A to be prime attribute
- Every relation in BONF is also in SNF
- Most relation schemas that are in 3NF are also BCNF but not all
- Example: RA, B, C)
- AB—>C

- C—>A

CS 377 [Spring 2016] - Ho

Example: BCNF Violation

- 1SS(Teacher, Subject, Student)
- Student, Subject —> Teacher
-+ Teacher —> Subject

- Keys in TSS
- (Student, Subject)

- (Student, Teacher)

CS 377 [Spring 2016] - Ho

Example: BCNF Violation (2)

- Is TSS in the 3NF?
- Student, Subject —> Teacher — superkey = okay
+ Teacher —> Subject
- |s teacher a superkey? NO
- |s subject a key attribute (part of key)? YES — okay
-+ Even though TSS is 3NF...

- Duplicate information is stored in relation (teacher, subject)

CS 377 [Spring 2016] - Ho

Example: BCNF Violation (3)

- Problem arises when 2 or more composite keys are in a relation
- Is relation BCNF?

- Student, Subject —> Teacher — superkey = okay

‘eacher —> Subject
‘eacher is not a superkey => BCNF violation!

» Solution: Decompose the violating FD

- T1(Teacher, Subject)
R2(Teacher, Student)

CS 377 [Spring 2016] - Ho

's Normalization Always Good”?

- Example: Suppose A and B are always used together but
normalization says they should be in different tables

Decomposition might produce unacceptable
oerformance loss (always joining tables)

-+ For example, data warehouses are huge historical DBs
that are rarely updated after creation — joins are
expensive or impractical

- Everyday DBs: aim for BCNF, settle for SNF!

CS 377 [Spring 2016] - Ho

Datalbase Design: Recap

+ Closure algorithm to find keys
+ Lossless decomposition

- 2NF

- 3NF

- BNCF

CS 377 [Spring 2016] - Ho

