
Database Design Theory and
Normalization Part II
CS 377

CS 377 [Spring 2016] - Ho

Recap: Last Class
• Normal form: set of properties that relations must satisfy

• Relations exhibit less anomalies

• Successively higher degrees of stringency

• 1NF: most basic normal form with atomic attributes

• Functional dependencies: X —> Y

• Armstrong’s axioms to derive additional FDs to find
good relational decompositions

CS 377 [Spring 2016] - Ho

Finding Keys of Relation R
• Bad news: find all keys of a relation is NP-complete

• Running time of algorithm to solve the problem exactly is
exponentially increasing with the problem size

• Large NP-complete problems are difficult to solve!

• No efficient solution to find all the keys

• Brute force algorithm: Check every subset of attributes for super key
strategy — tests every possible solution

• Solution: use heuristics to find all the keys of a relation

• Turn towards closures to help us find keys in a relation

CS 377 [Spring 2016] - Ho

Attribute Closure Set
• If X is an attribute set, the closure X+ is the set of all

attributes B such that X —> B

• X is subset of X+ since X —> X

• X+ includes all attributes that are functionally
determined from X

• Importance: If X+ = R, then X is a superkey

• Closure can tell us if set of attributes X is a superkey

CS 377 [Spring 2016] - Ho

Example: Closure
• Product(name, category, color, department, price)

• name —> color

• category —> department

• color, category —> price

• Attribute Closure:

• {name}+ = {name, color}

• {name, category}+ = {name, color, category, department, price}

CS 377 [Spring 2016] - Ho

Finding a Key after Closure
• If X+ not equal to the relation, we must augment more

attributes to X to obtain a key

• If X+ = R, then X is superkey — check for minimality

• Remove one or more attributes A

• Compute the closure of X - A to see if (X - A)+ = R

• X is a key if (X - A)+ not equal R for any attribute A

CS 377 [Spring 2016] - Ho

Closure Algorithm
• Input: A set F of FDs on a relation schema R, and a set of

attributes X, which is a subset of R

• Algorithm:  
Initialize X+ := X 
repeat 
 old X+ := X+ 
 for each functional dependency Y —> Z in F  
 if X+ superset Y, then X+ := X+ union Z  
until (X+ = old X+)

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm
EmpProj(SSN, FName, LName, PNo, PName, PLocation,
Hours)

• SSN —> FName, LName

• PNo —> PName, PLocation

• SSN, PNo —> Hours

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm (2)
• Initialize SSN+ := SSN

• Repeat loop (for each FD)

• SSN —> FName, LName 
=> SSN+ := SSN, FName, LName

• PNo —> PName, PLocation 
=> no change

• SSN, PNo —> Hours  
=> no change

• Result: SSN+ := SSN, FName, LName

Since there were changes,  
repeat another loop

through FDs, which results
in no changes => done

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm (3)
• Initialize PNo+ := PNo

• Repeat loop (for each FD)

• SSN —> FName, LName 
=> no change

• PNo —> PName, PLocation 
=> PNo+ := PNo, PName, PLocation

• SSN, PNo —> Hours  
=> no change

• Result: PNo+ := PNo, PName, PLocation

Since there were
changes,  

repeat another loop
through FDs, which

results in no changes
=> done

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm (4)
• Initialize (SSN, PNo)+ := SSN, PNo

• Repeat loop (for each FD)

• SSN —> FName, LName  
=> (SSN, PNo)+ := SSN, PNo, FName, LName

• PNo —> PName, PLocation 
=> (SSN, PNo)+ := SSN, PNo, FName, LName, PName, PLocation

• SSN, PNo —> Hours  
=> (SSN, PNo)+ := SSN, PNo, FName, LName, PName, PLocation, Hours

• Result: (SSN, PNo)+ := SSN, PNo, FName, LName, PName, PLocation, Hours

CS 377 [Spring 2016] - Ho

Example: Closure Algorithm (4)
• Summary of results:

• SSN+ := SSN, FName, LName

• PNo+ := PNo, PName, PLocation

• (SSN, PNo)+ := SSN, PNo, FName, LName, PName, PLocation, Hours

• (SSN, PNo) is a superkey!

• (SSN, PNo) is minimal superkey

• {(SSN, PNo) - (SSN)}+ = (PNo)+

• {(SSN, PNo) - (PNo)}+ = (SSN)+

CS 377 [Spring 2016] - Ho

Finding Keys: Heuristic 1
• Increase/decrease until you find keys

• Step 1: Compute closure of all functional dependencies in
F

• Step 2:

• If deficient, then add missing attributes to the LHS until
the closure is equal to the relation

• If sufficient, then remove extraneous attributes from the
LHS until set is minimal

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 1
• R(A, B, C, D, E, F)

• A —> B, C

• B, D —> E, F

• F —> A

• Step 1: Closure of all functional dependencies

• A+ = A, B, C

• (B, D)+ = A, B, C, D, E, F

• F+ = F, A, B, C

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 1 (2)
• Step 2: Insert / remove attributes

• A+ = A, B, C — insufficient so add

• Add D: (A, D)+ = A, B, C, D, E, F —> key!

• Add E: (A, E)+ = A, B, C, E

• Add F: (A, F)+ = A, B, C, F

• Add E, F: (A, E, F)+ = A, B, C, E, F

• No more so done

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 1 (3)
• Step 2: Insert / remove attributes

• (B, D)+ = A, B, C, D, E, F — sufficient so try deleting

• Delete B: (D)+ = D

• Delete D: (B)+ = B

• No more so done

B, D is minimal and thus a key!

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 1 (4)
• Step 2: Insert / remove attributes

• F+ = F, A, B, C — insufficient so add

• Add D: (D, F)+ = A, B, C, D, E, F —> key!

• Add E: (E, F)+ = A, B, C, E, F

• No more so done

Keys are: (A, D), (B, D), and (D, F)!

CS 377 [Spring 2016] - Ho

Finding Keys: Heuristic 2
• Find necessary attributes first

• Find the irreplaceable attributes

• Attribute is replaceable if it appears in the RHS of
some functional dependency

• A key must include every irreplaceable attribute

• Base set is set of all irreplaceable attributes

• Add other attributes to base set until you have a key

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 2
• R(A, B, C, D, E, F)

• A —> B, C

• B, D —> E, F

• F —> A

• Step 1: Find irreplaceable attributes and construct base
set 
Base set = {D}

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 2 (2)
• Step 2: Add other attributes until you have key

• Add A: (A, D)+ = A, B, C, D, E, F —> key!

• Add B: (B, D)+ = A, B, C, D, E, F —> key!

• Add C: (C, D)+ = C, D

• Add E: (D, E)+ = D, E

• Add F: (D, F)+ = A, B, C, D, E, F —> key!

CS 377 [Spring 2016] - Ho

Example: Key Heuristic 2 (3)
• Step 2: Add other attributes until you have key (do not

expand known keys)

• Add C: (C, D, E)+ = C, D, E

• No more to add, so done!

CS 377 [Spring 2016] - Ho

Second Normal Form (2NF)
• (Definition) A relation schema R is in 2NF if every non-

prime attribute (i.e., not a member of any candidate key)
A in R is not partially dependent on any key of R

• Relation is 1NF (attributes are atomic)

• No non-key attribute that is functionally determined by
only a (proper) subset of a key
A B C D E F G H

key  
 (A, B, C) B —> F means F is functionally dependent on

subset of key => violation of 2NF

CS 377 [Spring 2016] - Ho

2NF Meaning
A relation that violates 2NF contains another embedded
autonomous entity

A B C D E F G H

B F … …embedded 
entity

CS 377 [Spring 2016] - Ho

Example: Violation of 2NF
• EmpProj(SSN, FName, LName, PNo, PName, Hours)

• SSN —> FName, LName

• PNo —> PName

• SSN, PNo —> Hours

• FName is not part of any key

• SSN is (proper) subset of a key

• Violation since Employee entity is embedded (SSN, FName, LName)

CS 377 [Spring 2016] - Ho

Decomposition for Normal Form Violations
• Break a relation into two or more relations

• One possibility for EmpProj(SSN, FName, LName, PNo, PName,
Hours):

• R1(PNo, PName, Hours)

• R2(SSN, FName, Lname)

• Another possibility for EmpProj

• R3(SSN, FName, Lname)

• R4(SSN, PNo, PName, Hours)

Are these good or bad
decompositions?

CS 377 [Spring 2016] - Ho

Decomposition Effect
• Populate the new relations using data of the original

relation

• Achieve this by using projection operation on the
original relation

• Example:
R1 = ⇡SSN,FName,LName(EmpProj)

R2 = ⇡PNo,PName,Hours(EmpProj)

CS 377 [Spring 2016] - Ho

Decomposition Effect (2)
• Can we obtain the same information stored in the original

relation?

• Reconstruction algorithm:  
If () {  
 reconstruction = R1 * R2 // Natural join 
} else { 
 reconstruction = R1 x R2 // Cartesian product 
}

R1 \R2 6= ;

CS 377 [Spring 2016] - Ho

Example: Decomposition Effect

SSN FName LName PNo PName Hours
111-11-1111 John Smith pj1 ProjectX 20
111-11-1111 John Smith pj2 ProjectY 10
333-33-3333 Jack Rabbit pj1 ProjectX 5

SSN FName LName
111-11-1111 John Smith
333-33-3333 Jack Rabbit

PNo PName Hours
pj1 ProjectX 20
pj2 ProjectY 10
pj1 ProjectX 5

CS 377 [Spring 2016] - Ho

Example: Reconstructing After Decomposition

SSN FName LName
111-11-1111 John Smith
333-33-3333 Jack Rabbit

PNo PName Hours
pj1 ProjectX 20
pj2 ProjectY 10
pj1 ProjectX 5

x

SSN FName LName PNo PName Hours
111-11-1111 John Smith pj1 ProjectX 20
111-11-1111 John Smith pj2 ProjectY 10
111-11-1111 John Smith pj1 ProjectX 5
333-33-3333 Jack Rabbit pj1 ProjectX 20
333-33-3333 Jack Rabbit pj2 ProjectY 10
333-33-3333 Jack Rabbit pj1 ProjectX 5

Extraneous tuples that weren’t present in original relation!

CS 377 [Spring 2016] - Ho

Decomposition Relation Requirements
• Must be able to obtain all tuples in the original relation R

using the reconstruction algorithm

• Missing tuples means that we have lost information
which is unacceptable

• Must not obtain extraneous tuples that were not present
in the original relation R using the reconstruction algorithm

• Invalid information in the relation which is also
unacceptable

CS 377 [Spring 2016] - Ho

• A decomposition of relation R into 2 relations R1 and R2
is called lossless if and only if 
content(R1) * content(R2) = content(R) or  
content (R1) x content(R2) = content(R)

• 2 lemmas that provide needed guidelines to decompose
R to guarantee lossless

• Lemma 1:

• Lemma 2: If either or ,  
then

Lossless Decomposition

content(R) ✓ content(R1) ⇤ content(R2)

R1 \R2 ! R1 R1 \R2 ! R2

content(R) = content(R1) ⇤ content(R2)

CS 377 [Spring 2016] - Ho

Example: 2NF via Lemma 2
• EmpProj(SSN, FName, LName, PNo, PName, Hours)

• SSN —> FName, LName

• PNo —> PName

• SSN, PNo —> Hours

• At least one violating FD

• SSN —> FName

• SSN —> LName

Remove all attributes
functionally dependent
on SSN => compute

closure of SSN

CS 377 [Spring 2016] - Ho

Example: 2NF via Lemma 2 (2)
• R1(SSN+) = R1(SSN, FName, LName)

• R2(R - R1) = R2(PNo, PName, Hours)

• To satisfy lemma 2, add SSN to R2 =>  
R2(SSN, PNo, PName, Hours)

• R1 R2 = SSN, and SSN —> R1\

Are R1 and R2 in the 2NF?

CS 377 [Spring 2016] - Ho

Example: 2NF via Lemma 2 (3)
• R1(SSN, FName, LName)

• SSN —> FName, FName — key = good dependency

• R2(SSN, PNo, PName, Hours)

• SSN, PNo —> Hours — key = good dependency

• PNo —> PName — not key = bad!

Remove all attributes functionally dependent
on PNo => compute closure of PNo

CS 377 [Spring 2016] - Ho

Example: 2NF via Lemma 2 (4)
• R21(PNo+) = R21(PNo, PName)

• R22(R2 - R21) = R22(SSN, Hours)

• To satisfy lemma 2, add PNo to R22 =>  
R22(SSN, PNo, Hours)

• Resulting decomposition: 
R1(SSN, FName, LName)  
R21(PNo, PName)  
R22(SSN, PNo, Hours)

Are R1, R21, and R22
in the 2NF?

CS 377 [Spring 2016] - Ho

Example: 2NF Complaint
• Employee2(SSN, FName, LName, DNo, DName, MgrSSN)

• SSN —> FName, LName, DNo

• DNo —> DName, MgrSSN

• Employee2 is 2NF as DNo is not a subset of any key and neither of the functional
dependencies violate 2NF criteria

• But…

• Insert anomaly — adding new department results in NULL values

• Delete anomaly — deleting an employee may delete information about department

• Update anomaly — changing department name results in updates of multiple
tuples

CS 377 [Spring 2016] - Ho

Transitive Functional Dependency
A functional dependency A —> B is a transitive functional
dependency in relation R if there is a set of attributes X
such that:

• A —> X

• X —> B

• X is not a super key

CS 377 [Spring 2016] - Ho

Third Normal Form (3NF)
(Definition) A relation schema R is in 3NF if, whenever a
nontrivial functional dependency X —> A holds in R, either
(a) X is a super key of R, or (b) A is a prime attribute of R

• R is in 2NF

• Every non-key attribute is non-transitively dependent
on all the keys
A B C D E F G H
key (A, B, C)

If E —> G, then transitive
dependency 

(A, B, C) —> E —> G

CS 377 [Spring 2016] - Ho

Example: 3NF Violation
• Employee2(SSN, FName, LName, DNo, DName,

MgrSSN)

• SSN —> FName, LName, DNo

• DNo —> DName, MgrSSN

• Since DNo is not a super key, there is a transitive
dependency SSN —> DNo —> DName, MgrSSN

CS 377 [Spring 2016] - Ho

Simpler Form of 3NF
• A relation R is 3NF if and only if for every functional dependency

X —> B in relation R, one of the following must be true:

• X is a superkey, or

• B is a key attribute (part of some key)

• Violation detection: Check every functional dependency X —> B
for:

• B is a non-key attribute, and

• X is not a superkey

CS 377 [Spring 2016] - Ho

Example: 3NF Violation Take 2
Employee2(SSN, FName, LName, DNo, DName, MgrSSN)

• SSN —> FName, LName, DNo

• FName, LName, and DNO are non-key attributes => YES

• SSN is not superkey => NO

• FD is good

• DNo —> DName, MgrSSN

• Name and MgrSSN are non-key attributes => YES

• DNo is not superkey => YES

• FD is bad and a 3NF violation

CS 377 [Spring 2016] - Ho

Example: 3NF Decomposition
• Solution: remove the violation by removing X+ from the

original relation

• R(A, B, C, D, E, F)

• A —> B, C, D

• D —> E, F

• Step 1: Find all keys

• A+ = (A, B, C, D, E, F)

CS 377 [Spring 2016] - Ho

Example: 3NF Decomposition (2)
• Step 2: Is R 2NF?

• Key(s): A

• Non-key attributes: B, C, D, E, F

• Is any of the non-key attributes functionally dependent
on subset of (A)? NO

• Relation is 2NF

CS 377 [Spring 2016] - Ho

Example: 3NF Decomposition (3)
• Step 3: Is R 3NF?

• Key(s): A

• Non-key attributes: B, C, D, E, F

• Is any of the non-key attributes functionally dependent
on attributes that are not super key? YES!

• D —> E, F where D is not a superkey

CS 377 [Spring 2016] - Ho

Example: 3NF Decomposition (4)
• Step 4: Extract offending functional dependence

• D+ = (D, E, F)

• R1(D, E, F)  
R2(A, B, C, D)

• Step 5: Check the new relations if they are 3NF?

• R1: D —> E, F doesn’t violate 3NF criteria

• R2: A —> B, C, D doesn’t violate 3NF criteria

CS 377 [Spring 2016] - Ho

Summary of 1NF, 2NF, 3NF
Normal Form Test Normalization (Remedy)

1NF
Relation should have no
multi-valued attributes or
nested relations

Form new relation for each
multivalued attribute or nested
relation

2NF

For relations where primary
key contains multiple
attributes, no nonkey
attribute should be
functionally dependent on a
part of the primary key

Decompose and set up a new
relation for each partial key
with its dependent attributes
using lossless decomposition

3NF

Relation should not have a
nonkey attribute functionally
determined by another
nonkey attribute

Decompose and set up a
relation that includes the
nonkey attribute(s) that
functionally determine(s) other
nonkey attributes

CS 377 [Spring 2016] - Ho

Boyce-Codd Normal Form (BCNF)
(Definition) A relation schema R is in BCNF if whenever a nontrivial
functional dependency X —> A holds in R, then X is a superkey of R

• Difference from 3NF: 3NF allows A to be prime attribute

• Every relation in BCNF is also in 3NF

• Most relation schemas that are in 3NF are also BCNF but not all

• Example: R(A, B, C)

• A, B —> C

• C —> A

CS 377 [Spring 2016] - Ho

Example: BCNF Violation
• TSS(Teacher, Subject, Student)

• Student, Subject —> Teacher

• Teacher —> Subject

• Keys in TSS

• (Student, Subject)

• (Student, Teacher)

CS 377 [Spring 2016] - Ho

Example: BCNF Violation (2)
• Is TSS in the 3NF?

• Student, Subject —> Teacher — superkey = okay

• Teacher —> Subject

• Is teacher a superkey? NO

• Is subject a key attribute (part of key)? YES — okay

• Even though TSS is 3NF…

• Duplicate information is stored in relation (teacher, subject)

CS 377 [Spring 2016] - Ho

Example: BCNF Violation (3)
• Problem arises when 2 or more composite keys are in a relation

• Is relation BCNF?

• Student, Subject —> Teacher — superkey = okay

• Teacher —> Subject 
Teacher is not a superkey => BCNF violation!

• Solution: Decompose the violating FD

• T1(Teacher, Subject) 
R2(Teacher, Student)

CS 377 [Spring 2016] - Ho

Is Normalization Always Good?
• Example: Suppose A and B are always used together but

normalization says they should be in different tables

• Decomposition might produce unacceptable
performance loss (always joining tables)

• For example, data warehouses are huge historical DBs
that are rarely updated after creation — joins are
expensive or impractical

• Everyday DBs: aim for BCNF, settle for 3NF!

CS 377 [Spring 2016] - Ho

Database Design: Recap
• Closure algorithm to find keys

• Lossless decomposition

• 2NF

• 3NF

• BNCF

