
Database Design Theory and 
Normalization
CS 377: Database Systems



CS 377 [Spring 2016] - Ho

Midterm: Gradescope Logistics
• Original exams can be picked up (no markings on them) 

• Did my best to ensure grading was fair and consistent 

• Email (to netID@emory.edu) may be in your spam folder 

• Re-grade requests 

• Submit a written request (through Gradescope) indicating which 
problem/subproblem you would like regraded and prepare a clear 
and concise argument why you feel you deserve the points 

• Warning: I may regrade the problem and you may lose points if I 
discover that I missed something previously

mailto:netID@emory.edu


CS 377 [Spring 2016] - Ho

Midterm Statistics*

• Mean: 70.17 

• Median: 70.50 

• STD: 8.68

* statistics may change due to regrading requests 



CS 377 [Spring 2016] - Ho

Midterm Statistics (2)

Q1

14 16 18 20 0 2 4 6 8 12 10 15 20

5
10

20

14
17

20

Q2

Q3

8
12

0
4

8
12

Q4

Q5

0
2

4
6

5 10 15 20

10
20

8 10 12 14 0 1 2 3 4 5 6

Q6



CS 377 [Spring 2016] - Ho

Assignment and Midterm

hw

0 20 40 60 80 100

80
12
0

16
0

20
0

0
20

60
10
0

pj1

80 100 120 140 160 180 200 50 60 70 80

50
60

70
80

midterm



CS 377 [Spring 2016] - Ho

0

5

10

60 70 80 90
Total Score

C
ou

nt

Grades: Almost Point

• 38.75% of your 
grade is already set 

• Each assignment 
is worth 6.25% 

• Midterm was 
worth 20%

Score =
18.75

20 + 18.75
(HW1 + HW2 + PJ1)/3 +

20

20 + 18.75
MIDTERM



CS 377 [Spring 2016] - Ho

Rest of Semester Logistics
• Project #3: Java Application 

• Out today (3/14) 

• Due 3/23 at 11:59 pm 

• Homework #3: Database 
Design 

• Out 3/23 

• Due 3/30 in class

• Homework #4: Indexing 
and Query Optimization 

• Out today (3/30) 

• Due 4/11 in class 

• Project #4: PHP 

• Out 4/11 

• Due 4/20 at 11:59 pm



CS 377 [Spring 2016] - Ho

Recap: What Has Been Covered
Lectures 1-2:  

Database Overview  
& Concepts

Lecture 3: 
Conceptual Data 
Model (ER Model)

Lecture 4: 
Representational 
Model (Relational 
Model) & Mapping 

from ER to Relation 
Model

Lectures 5-6:  
Relational Algebra 

& Calculus

Lectures 7-11:  
SQL & MySql

Lecture 12: 
JDBC 

(Using SQL with 
Applications)



CS 377 [Spring 2016] - Ho

What’s Left
• Database design: Schema normalization 

• Data storage & indexing 

• Query optimization 

• Transaction management & concurrency control 

• PHP (Web programming) 

• Big data systems 

• NoSQL

Intention: Give you a taste of 
advanced database systems. 
More details — take CS554



CS 377 [Spring 2016] - Ho

Universal Relation
• Put every attribute that you need to store into one single 

(huge) relation 

• Example: Company database model 
COMPANY(SSN, name, …, dno, dname, …, pno, 
pname, …, dept_name, … , dependent_name, …) 

• What is so bad about this relation?



CS 377 [Spring 2016] - Ho

Are these Bad Designs?



CS 377 [Spring 2016] - Ho

When is a Relation “Good” or “Bad”?
• Database researches have found a number of bad properties 

called anomalies 

• When a relation exhibits one or more of these anomalies, the 
relation is deemed bad 

• CAVEAT: 

• “Good” relations can be inefficient 

• DB designers may decide to use “bad” relations for 
performance reasons, but need to take precaution to make 
sure “bad” things do not happen



CS 377 [Spring 2016] - Ho

Database Anomalies: Insert Anomaly
• Normal behavior of inserting ONE item of information 

• One tuple is introduced in one or more tables 

• No NULL values are introduced 

• Insert anomaly occurs when inserting ONE item of 
information 

• Multiple tuples into some relation 

• Needs to use NULL values



CS 377 [Spring 2016] - Ho

Example: Insert Anomaly
Relation to represent information about employees and 
departments 

What if a new department is introduced (dno = 6, dname = 
“Administration”) that does not have any employees yet? 

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 123-45-6789
222-22-2222 Jane Doe 5 Research 123-45-6789
333-33-3333 Jack Rabbit 1 Payroll 777-77-7777

SSN FName LName DNo DName MgrSSN
NULL NULL NULL 6 Administration NULL



CS 377 [Spring 2016] - Ho

Database Anomalies: Delete Anomaly
• Normal behavior of deleting ONE item of information 

• One tuple is removed in one or more tables 

• Only intended information is deleted and does not cause 
loss of additional information 

• Delete anomaly occurs when deleting ONE item of information 

• Deletes multiple tuples into some relation 

• Causes additional (unintended) information



CS 377 [Spring 2016] - Ho

Example: Delete Anomaly
 

 
What if Jack Rabbit leaves the company?  
DELETE employee WHERE fname = ‘Jack’ AND lname 
= ‘Rabbit’;

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 123-45-6789
222-22-2222 Jane Doe 5 Research 123-45-6789
333-33-3333 Jack Rabbit 1 Payroll 777-77-7777

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 123-45-6789
222-22-2222 Jane Doe 5 Research 123-45-6789

Payroll department is also deleted!



CS 377 [Spring 2016] - Ho

Database Anomalies: Update Anomaly
• Normal behavior of updating ONE item of information 

• One tuple in one or more tables is updated 

• Update anomaly occurs when updating ONE item of 
information 

• Updates multiple tuples from some relation



CS 377 [Spring 2016] - Ho

Example: Update Anomaly
 

 
What if manager of research department changes? 
UPDATE employee SET MgrSSN = ‘888-88-8888’  
WHERE DName = ‘Research’; 

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 123-45-6789
222-22-2222 Jane Doe 5 Research 123-45-6789
333-33-3333 Jack Rabbit 1 Payroll 777-77-7777

SSN FName LName DNo DName MgrSSN
111-11-1111 John Smith 5 Research 888-88-8888
222-22-2222 Jane Doe 5 Research 888-88-8888
333-33-3333 Jack Rabbit 1 Payroll 777-77-7777

Operation has modified multiple tuples in single relation!



CS 377 [Spring 2016] - Ho

Generation of Spurious Tuples
• Natural join results in more tuples than “expected” 

• Represents spurious information that is not valid 

• Example: What happens during a natural join?



CS 377 [Spring 2016] - Ho

Example: Generation of Spurious Tuples

Asterisk denotes the tuples that don’t make sense



CS 377 [Spring 2016] - Ho

Informal Design Guidelines
• Design relations where meaning of a relation’s attributes can 

be easily explained — avoid combining multiple entity types 
and relationship types into a single relation 

• Avoid insertion, deletion, and update anomalies — minimize 
redundant information 

• Reduce NULL values in tuples — use space efficiently and 
avoid joins with NULL values 

• Design relation schemas to guarantee no spurious tuples —
avoid relations that contain matching attributes that are not 
(foreign key, primary key) combinations



CS 377 [Spring 2016] - Ho

Formal Database Design Theory
• Normal forms 

• Set of properties that relations must satisfy 

• Successively higher degrees of stringency 

• Database normalization 

• Certify whether a database design satisfies a certain 
normal form 

• Correct designs to achieve certain normal form



CS 377 [Spring 2016] - Ho

History of Database Design
Relational 

database model  
(Codd, 1970)

Classical paper on database 
normalization based on 

functional dependency - 1NF, 
2NF, & 3NF (Codd, 1972)

Boyce-Codd Normal Form 
(BCNF) is a new and 

stronger 3NF 
(Boyce & Codd, 1974) 

4NF with multi-valued 
dependences  
(Fagin, 1977)

5NF with 
projection-join 
normal form  
(Fagin, 1979)



CS 377 [Spring 2016] - Ho

Relationship amongst Normal Forms

Each rectangle represents all possible relations
Image courtesy of Prof Cheung’s notes



CS 377 [Spring 2016] - Ho

Normalization: General Idea
• Designers should aim for the “ultimate” 5NF 

• However, designers typically stop at 3NF or BCNF 

• Designing a good database is a complex task 

• Normalization is useful aid but should not be panacea 

• Normal forms can be violated deliberately to achieve 
better performance (less join operations)



CS 377 [Spring 2016] - Ho

First Normal Form (1NF)
• Simplest one that does not depend on “functional 

dependency” 

• Basic relational model where every attribute has atomic 
(single, not multi) values 

• Techniques to achieve 1NF (if not already done) 

• Remove attribute violating 1NF and place in separate 
relation 

• Expand the key



CS 377 [Spring 2016] - Ho

Example: 1NF Conversion

Adapted from Figure 14.9 (Book)



CS 377 [Spring 2016] - Ho

Functional Dependencies (FD)
• Constraint between two sets of attributes 

• Generalize the concept of keys 

• Definition: 

• Let X and Y be 2 sets of attributes of R 

• A functional dependency (X —> Y) occurs if for any two tuples 
t1 and t2 of the relation R, if t1[X] = t2[X] (i.e., the attribute 
values for X is the same in both tuples) then t1[Y] = t2[Y]  
 

X—>Y means that whenever two tuples 
agree on X, then they agree on Y



CS 377 [Spring 2016] - Ho

FD Pictorially

A B C D E F G
… … … … … … …
… b7 c4 … e1 f3 g4
… … … … … … …
… b7 c4 … e1 f3 g4
… … … … … … …

t1

t2

X Y

If t1 and t2 agree here… they also agree here!



CS 377 [Spring 2016] - Ho

Example: Company Database
• Relation that represent information about employees and the 

projects they work on 

• FDs in the relation 

• SSN —> fname, lname 

• PNo —> PName 

• SSN, PNo —> Hours

SSN FName LName PNo PName Hours
111-11-1111 John Smith pj1 ProjectX 20
111-11-1111 John Smith pj2 ProjectY 10
333-33-3333 Jack Rabbit pj1 ProjectX 5



CS 377 [Spring 2016] - Ho

Example: Company Database (2)

• FDs can cause anomalies due to dependency between 
attributes 

• Insert anomaly - new project (pj3) with no employees 

• Delete anomaly - deleting John Smith from pj2 deletes 
information about pj2

SSN FName LName PNo PName Hours
111-11-1111 John Smith pj1 ProjectX 20
111-11-1111 John Smith pj2 ProjectY 10
333-33-3333 Jack Rabbit pj1 ProjectX 5



CS 377 [Spring 2016] - Ho

Example: Course Database
• Relation with courses, students, and instructors 

• FDs in the relation 

• courseNo, semester —> instructor 

• studentID —> courseNo, semester

studentID semester courseNo section instructor
123455 Spring16 CS377 0 Ho
234097 Spring16 CS377 0 Ho
234107 Fall15 CS377 0 Cheung
140701 Fall15 CS377 0 Cheung



CS 377 [Spring 2016] - Ho

Inferring FDs
• An FD is 

• Inherent property of an application 

• Defined based on the semantics of the attributes 

• Not something we can infer from a set of tuples 

• Given a table with a set of tuples 

• Can confirm that a FD seems to be valid 

• Infer a FD is definitely invalid 

• Can never prove that FD is valid



CS 377 [Spring 2016] - Ho

Refresher: Keys
• Set of attributes S is a super key of a relation R if S 

functionally determines all attributes in R  

• Set of attributes K is a key of a relation if and only if 

• K functionally determines all attributes in R 

• K is minimal superkey 

• None of its subsets functionally determines all attributes 
in R

8t1, t2 2 R : t1[SK] 6= t2[SK]



CS 377 [Spring 2016] - Ho

“Good” vs “Bad” FDs
• A key of a relation functionally determines all attributes in 

that relation 

• This is called natural or trivial 

• “Good” functional dependency is a natural or trivial 
functional dependency 

• Functional dependencies other than natural 
dependencies will cause anomalies



CS 377 [Spring 2016] - Ho

Example: Company DB Revisited

• SSN, PNo —> Hours is a “good” functional dependency 

• (SSN, PNo, Hours) should be in the same relation 

• SSN —> fname, lname is a “bad” functional dependency 
and should be taken out and put together in another 
relation on their own 

• PNo —> PName is a “bad” functional dependency and 
should be taken out and put in another relation on their own

SSN FName LName PNo PName Hours



CS 377 [Spring 2016] - Ho

“Bad” FDs Cause Anomalies
• Since the LHS of a functional dependency is not a key, 

you can have multiple tuples in the database 

• Leads to update anomalies as well as insert and delete 
anomalies 

• Duplication of information is guaranteed! 

• Solution: break up the relation into multiple tuples



CS 377 [Spring 2016] - Ho

Relation Decomposition
• A decomposition of relation R is a collection of relations 

R1, R2, …, Rn such that every attribute of R appears in 
R1, R2, …, Rn at least once 

• Some decompositions are useful and some aren’t 

• Example:  
Employee(SSN, Fname, LName, PNo, PName, Hours) —  
R1(SSN, PName, Hours)  
R2(PNumber, Fname, LName) 

• Decompose with a goal!
What does this mean?



CS 377 [Spring 2016] - Ho

What is a Good Decomposition?
• Normal forms will be guiding criteria for better relations 

• When a relation R violates the guiding criteria of normal 
form, we decompose the relation to comply with the 
guiding criteria of the normal form 

• Use functional dependencies to determine if dependency 
is “good” or “bad” 

• Find all keys of the relation R via inference rules



CS 377 [Spring 2016] - Ho

Armstrong’s Axioms
• Most basic inference rules 

• Given a set of functional dependencies, we can derive 
additional functional dependencies using inference 
rules 

• Sound — any FD inferred using Armstrong’s axioms will 
hold in R 

• Complete — Every valid FD on R can be found by 
applying only Armstrong’s axioms



CS 377 [Spring 2016] - Ho

Armstrong’s Axiom 1: Reflexivity
• For attribute sets X, Y: If Y is subset of X, then X—> Y 

• Examples: 

• A, B —> B 

• A, B, C —> A, B 

• A, B, C —> A, B, C



CS 377 [Spring 2016] - Ho

Armstrong’s Axiom 2: Augmentation
• For attribute sets X, Y, Z: If X —> Y, then X, Z —> Y, Z 

• Examples: 

• A —> B implies A, C —> B, C 

• A, B —> C implies A, B, C -> C



CS 377 [Spring 2016] - Ho

Armstrong’s Axiom 3: Transitivity
• For attribute sets X, Y, Z: If X —> Y and Y —> Z, then X 

—> Z 

• Examples: 

• A —> B and B —> C implies A —> C 

• A —> C, D and C, D —> E implies A —> E



CS 377 [Spring 2016] - Ho

Example: Armstrong’s Axioms
• Product(name, category, color, department, price) 

• Given initial set of FDs: 

• name —> color 

• category —> department 

• color, category —> price 

• Inferred FDs: 

• name, category —> price: augmentation & transitivity 

• name, category —> color: reflexivity & transitivity



CS 377 [Spring 2016] - Ho

Other Useful Inference Rules
• Derived from Armstrong’s Axioms 

• Decomposition rule: If X —> Y, Z then X —> Y, X —> Z 

• Union rule: If X —> Y and X —> Z, then X —> Y, Z 

• Pseudo transitivity rule: If X —> Y and Y, W —> Z then  
X, W—> Z



CS 377 [Spring 2016] - Ho

Database Design: Recap
• Informal guidelines for good design 

• 1NF 

• Functional dependency 

• Inference rules for FD


