Big Data Systems

CS 377: Database Systems

Recap: What Has Been Covered

Representational

Database Conceptual data e o] —

Relational query

overview model — ER languages — RA &
(1+2) model (3)

Relational model

(4)

RC (5 + 6)

SQL application
programming
— JDBC / PHP

(12 & 22)

SQL — Data definition
& manipulation,
queries, & views (7-11)

Database design
— normal forms
(14 + 15)

Query
File storage Indexes processing &
(16) (17 + 18) optimization
(19 + 20)

Transaction
mMmanagement
(21)

CS 377 [Spring 2016] - Ho

Recap: What Has Been Covered

What | hope you've learned...

Design a database

Requirements -> ER diagram -> Relational model ->
Database normalization

-+ Query a database (even with concurrent users and
crashes)

Relational algebra, calculus, SQL queries, transactions

- Optimizing the performance of your datalbase (at a high
level)

CS 377 [Spring 2016] - Ho

Recap: DBMS Architecture

Users: DBA Staff Casual Users Application Parametric Users ©

/N L

DDL Privileged nteractive Application
Statements Commands Query Programs

Host
DDL Query . Lan
: - guage
Compiler Compiler Precompiler Compiler
' l
i Y v
4 .
: Query DML . Compnlgd
I Optimizer Compiler 9 Transactions
: 4 4
I ’ L’
I -
I >é< - —
[- gaie
1 |
: . DBA Commands,
' e Queries, and Transactions
[-
Y L y
g Runtime Stored
System Lo _ . #| Database | * Data
Catalog/ - PR : Proc?ssor Concurrency Control/ Manager
Data - e Backup/Recovery
Dictionary \J Subsystems

Stored Database Input/Output
Query and Transaction from Database
Execution:

CS 377 [Spring 2016] - Ho

Most aspects of
traditional database
system Is

“understood” (high-level)

Learned enough to be
“dangerous”

Additional detalls can be
picked up

Courses

On your own

Goal of Today’s Lecture

- High-level overview of dealing with “big data”
- What is big data”?
- What are different technologies | can use?

- Not meant to be detailed examination of all aspects of
systems covered

CS 377 [Spring 2016] - Ho

Data Never Sleeps

Users MAKE - PASSENGERS = USERS LIKE
TAKE

RIDES POSTS

CALLS @ — TWEETS |
—— USERS VIEW @ _ USERS UPLOAD ——
VIDEOS HOURS

yd OF NEW VIDEO
D
USERS LIKE —

SNAPS ~—— B | = ~ PHOTOS

USERS SWIPE —— @ - @

TIMES IMAGES

USERS PIN —

- USERS
DOWNLOAD

SUBSCRIBERS
VIDEQS — RECEVES ' JERS CAST STREAM

VOTES
UNIQUE VISITORS —

HOURS OF VIDEQO -

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

CS 377 [Spring 2016] - Ho

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

4 \'’s of Big Data

It's estimated that

2.5 QUINTILLION BYTES

[2.3 TRILLION GIGABYTES]
of data are created each day

40 ZETTABYTES

[43 TRILLION GIGABYTES]

of data will be created by
2020, an increase of 300
times from 2005

The
FOUR V’s
of Big
Data

From traffic patterns and music downloads to web
history and medical records, data is recorded,
stored, and analyzed to enable the technology
and services that the world relies on every day.
But what exactly is big data, and how can these
massive amounts of data be used?

2020
Mgy, n

6 BILLION
PEOPLE

have cell
phones

Most companies in the
U.S. have at least

100 TERABYTES

[100,000 GIGABYTES]
of data stored

WORLD POPULATION: 7 BILLION As a leader in the sector, IBM data scientists
break big data into four dimensions: Velume,

Velocity, Variety and Veracity

Modern cars have close to

The New York Stock Exchange Depending on the industry and organization, big

captures 1[]0 SENSURS data encompasses information from multiple
1 TB OF TRADE \ . (that monitor items such as internal and external sources such as transactions,

fuel level and tire pressure social media, enterprise content, sensors and
INFURMATION (mobile devices. Companies can leverage data to

during each trading session adapt their products and services to better meet

customer needs, optimize operations and
infrastructure, and find new sources of revenue.

Velocity

ANALYSIS OF
STREAMING DATA

By 2015

4.4 MILLION ITJOBS

will be created globally to support big data,
with 1.9 million in the United States

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

—almost 2.5 connections
per person on earth

T

As of 2011, the global size of
data in healthcare was

By 2014, it's anticipated
there will be

estimated to be 420 MILLION
150 EXABYTES WEARABLE, WIRELESS
[161 BILLION GIGABYTES] HEALTH MONITORS

=

4 BILLION+
HOURS OF VIDEO

are watched on
YouTube each month

You

30 BILLION w P
PIECES OF CONTENT ‘ =
are shared on Facebook

every month

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

L 4
»

¥

nﬁ%" »
£

1IN 3 BUSINESS
LEADERS

don’t trust the information
they use to make decisions

Poor data quality costs the US
economy around

$3.1 TRILLION A YEAR
i

21% OF
RESPONDENTS

W

in one survey were unsure of
how much of their data was
inaccurate

Veracity

UNCERTAINTY
OF DATA

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

CS 377 [Spring 2016] - Ho

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

Motivation for Parallel / Distributed DBMS

- Single, monolithic DBMS is impractical and expensive
- Constantly need to move data to deal with storage

- Improve performance

- Increased availability & reliability

- Potentially lower cost of ownership

- Easier, more economical system expansion

CS 377 [Spring 2016] - Ho

Parallel/Distributed DBMS

- Data partitioned across multiple disks
- Allows parallel |/O for better speed-up

- Individual relational operations (e.g., sort, join, aggregation)
can be executed in parallel

+ Each processor can work independently on its own
partition

- Queries can be run in parallel with each other

- Concurrency control takes care of conflicts

CS 377 [Spring 2016] - Ho

Parallel vs Distributed

- Parallel DBMS:
- Nodes are physically close to each other
- Nodes connected via high-speed LAN
+ Communication cost is small
- Distributed DBMS
- Nodes can be far away
- Nodes connected via public network

- Communication cost and problems shouldn’t be ignored

CS 377 [Spring 2016] - Ho

Parallel/Distributed DBMS |Issues

- How to distribute the data
- How to optimize the cost of queries

- Data transmission + local processing
- How to perform concurrency control

- How to make system resilient to fallures and achieve
atomicity & durabillity

CS 377 [Spring 2016] - Ho

Scale-Up vs Scale-Out

Terminology to measure performance

Speed-up: using more processors, how much faster will
the task run (assuming same problem size)?

Scale-up: using more processors, does performance
remain the same as we increase problem size”

Scale-out: using a larger number of servers, does
performance improve?

CS 377 [Spring 2016] - Ho

Parallel Architectures

Share Share Share
Everything Disks Nothing

P Netwaork 1P Netwaork IP Network

LOCH
Storage

FC

eg. Unix FS eg. Oracle RAC eg. HDFS

http://image.slidesharecdn.com/hadooparchitecture-091019175427-phpapp01/95/big-data-
analytics-with-hadoop-18-638.jpg?cb=1411533606

CS 377 [Spring 2016] - Ho

http://image.slidesharecdn.com/hadooparchitecture-091019175427-phpapp01/95/big-data-analytics-with-hadoop-18-638.jpg?cb=1411533606

Shared Everything

- Nodes share BAM + disk

Share
Everything

+ Dozes to hundreds of processors

- Easy to use and program

- EXpensive to scale — last remaining
I”“"' cash cow in the hardware industry

- Example: SQL server running on
single machine but leverage many
threads to get a query to run faster

CS 377 [Spring 2016] - Ho

Shared Disk

FC
B osvon

eg. Oracle RAC

Nodes share same disk

Easy fault tolerance + easy
consistency (single copy of DB)

Hard to scale past a certain point —
existing deployments typically have
fewer than 10 machines

Example: Oracle servers use this
paradigm quite a bit

CS 377 [Spring 2016] - Ho

Shared Nothing

Each instance has its own CPU,
memory, and disk

Share
Nothing

- Connected via fast network

Easy to increase capacity

Hard to ensure consistency

Most scalable architecture

Most difficult to administer and tune!

CS 377 [Spring 2016] - Ho

How to Distribute the Data”?

- Replication: system maintains multiple copies of data, stored
IN different sites for faster retrieval and fault tolerance

- (PRO) Improves availability, parallelism, and reduced data
transter

- (CON) Increased cost of updates, complexity of
concurrency control

- Fragmentation: relation is partitioned into several fragments
stored at distinct sites

-+ Combination of both replication & fragmentation

CS 377 [Spring 2016] - Ho

Example: Replication & Fragmentation

Figure 25.1
Data distribution and replication
among distributed databases.

EMPLOYEES All

EMPLOYEES San Francisco PROJECTS Al

and Los Angeles WORKS_ON All EMPLOYEES New York
PROJECTS San Francisco Chicago PROJECTS All
WORKS_ON San Francisco (Headquarters) WORKS_ON New York

employees l employees

San Francisco New York
Communications
Network
Los Angeles Atlanta

EMPLOYEES Los Angeles EMPLOYEES Atlanta
PROJECTS Los Angeles and PROJECTS Atlanta

San Francisco WORKS_ON Atlanta
WORKS_ON Los Angeles employees

employees

CS 377 [Spring 2016] - Ho

Figure 25.1 from FoDS book

Fragmentation Strategies

Horizontal partition: each tuple Is assigned to one or more
fragments

Round robin
Hash partitioning
Range partitioning
- Vertical partition: relation is split into smaller schemas
ngh with a common candidate key to ensure lossless
join

CS 377 [Spring 2016] - Ho

Example: Horizontal Partition

branch _name account_number balance
Hillside A-305 500
Hillside A-226 336
Hillside A-155 62

account 1= Obranch_name="“Hillside” (accoun t)

branch _name |account_number balance
Valleyview A-177 205
Valleyview A-402 10000
Valleyview A-408 1123
Valleyview A-639 750

accoun zL2 = Obranch_name="Valleyview” (accoun t)
http://www.db-book.com/

CS 377 [Spring 2016] - Ho

http://www.db-book.com/

Example: Vertical Partition

branch _name customer _name tuple_id
Hillside Lowman 1
Hillside Camp 2
Valleyview Camp 3
Valleyview Kahn 4
Hillside Kahn 5
Valleyview Kahn 6
Valleyview Green 7
dep osi t1 = Hbranch_name, customer_name, tuple_id (empl oy ee—in fo)
account_number balance tuple_id
A-305 500 1
A-226 336 2
A-177 205 3
A-402 10000 4
A-155 62 5
A-408 1123 6
A-639 750 7

deposit,= I account_number, balance, tuple_id

CS 377 [Spring 2016] - Ho

(employee_info)

http://www.db-book.com/

http://www.db-book.com/

Query Processing in Distributed DBMS

-+ Single, centralized system — primary criterion for cost is
just number of disk accesses

- Distributed system
- Cost of data transmission over network

Potential gain in performance from having several sites
orocess parts of the query

CS 377 [Spring 2016] - Ho

Review: Query Processing Single Machine

Given two relations R(A, B) and S(B,C) with no indexes, how do we
compute the following?

. Selection: 0a=123(R)
Ans: Scan file R, select records with A = 123

- Group by: A-FSUM(B)(R)
Ans: Use either sorting or hashing to aggregate on A then apply
sum to each group

- Join: RS
ANns: Nested block join, create hash index on B for smaller
relation and doing hash join, or sort on B and do sort-merge join

CS 377 [Spring 2016] - Ho

Query Processing: Parallel/Distributed DBMS

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the
following?

Ans: Relatively easy, not that different from single

. Group by: aFsum(B) ()
Ans: It already partitioned based on A 1o each system
(hash or range), relatively easy. Otherwise, If it is round
robin, need to pass data to the nodes to aggregate the
same values together

CS 377 [Spring 2016] - Ho

Query Processing: Parallel/Distributed DBMS (2)

- Join: R+ S

- Strategy 1: Transfer both R and S into one central
location and join (very expensive from sending)

- Strategy 2: Perform local join by just sending the
joining column of one relation, S, to where the other
one is located, R (minimizes data transmission)

CS 377 [Spring 2016] - Ho

Example: Distributed Join

Node 1 Node 2 Node
S2
R o vF%2 v83
\ 4

R1 ST R2 S2 R3 S3

1 2 4 7 5 4 2 3 8 06 6 7

3 2 4 9 / 6 2 9 9 © 6 9
3

R1 S2 R2’ S R2"+R3 S3
1 2 2 3 5 4 4 7 ; g 6 7
3 2 2 4 9 9 6 6 9

Node 1 Node 2 Node 3

CS 377 [Spring 2016] - Ho

Example: Distributed Join (2)

1 2 3 7 6 7
1 2 9 7 6 9
3 2 3 8 6 7
3 2 9

Node 1 Node 2 Node 3

T

combine tuples for final output

CS 377 [Spring 2016] - Ho

Distributed Iransactions & Recovery

Problems arising only in distributed/parallel setting

- Dealing with multiple copies of data items — how to maintain
consistency amongst the copies

- Fallure of individual sites — what to do when one site fails and then
rejoins the system later

- Faillure of communication issues

- Distributed commit — what to do if some nodes fail during commit
process’”?

- Distributed deadlock

CS 377 [Spring 2016] - Ho

Parallel / Distributed Datalbase Properties

- Advantages
- Data sharing
- Reliability and availability
- Improved query processing speed
- Disadvantages
- May increase processing overhead
- Harder to ensure ACID guarantees

- More database design issues

CS 377 [Spring 2016] - Ho

‘MQGJQ@
maplhediuce

MapReduce

- Initially developed by Jeffrey Dean & Sanjay Ghemawat at
Google [2004]

- Open source implementation: Apache Hadoop

- High-level programming model and implementation for
large-scale parallel data processing

- Designed to simplity the task of writing parallel programs

CS 377 [Spring 2016] - Ho

MapReduce: Overview

- Read partitioned data

- Map: extract something you care about from each record
- Group by key: sort and shuffle (done by the system)

- Reduce: aggregate, summarize, filter, or transform

- Write the result

Outline stays the same, map and reduce should be
tailored to the problem

CS 377 [Spring 2016] - Ho

MapReduce: Map Step

Input Intermediate
key-value pairs key-value pairs

LT

A = @ My
Al = @/ 77

AT @//

http://www.mmds.org/#book

CS 377 [Spring 2016] - Ho

http://www.mmds.org/#book

MapReduce: Reduce Step

Output

Intermediate Key-value groups key-value pairs
key-value pairs

D[] ST TESC
S sz Ol =>oC
o

M @E O

http://www.mmds.org/#book

CS 377 [Spring 2016] - Ho

http://www.mmds.org/#book

Example: Word Counting

- We have a huge text document (~ 1 million words)

- Task: Count the number of times each distinct word appears
N the file

- Traditional DBMS

- Load document words into a table

-+ SQL query:
SELECT count(*)
FROM document
GROUP BY word

CS 377 [Spring 2016] - Ho

Example: Word Counting (MapReduce)

Provided by the Provided by the
programmer programmer

MAP:

Read input and
produces a set of
key-value pairs

Reduce:
Collect all values
belonging to the

key and output

Group by key:
Collect all pairs
with same key

The crew of the space
shuttle Endeavor recently (The, 1) (Crer 1)

returned to Earth (crew, 1) (crew, 1)

reads

ambassadors, harbingers o (crew 2)
a new era of space (Of, 1) (space, 1) (’)
exploration. Scientists at (the 1) (the 1) Space, 1
AS A A A Y /

ASA BrE SayinG (the, 3)

recent assembly of the (space, 1) (the, 1)
Dextre bot is the first step in (ShUtt'E 1) (the 1)

man/mache partnlership. (Endeavor, 1) (ShUtt'E, 1)
"The work we're doing now

— the robotics we're doing (recently, 1) (recently, 1)
-- is what we're going to

(shuttle, 1)
(recently, 1)

Only sequential

Big document (key, value) (key, value) (key, value)

http://www.mmds.org/#book

CS 377 [Spring 2016] - Ho

http://www.mmds.org/#book

MapReduce Ecosystem

Many extensions to address limitations

- Capabilities to write directed acyclic graphs of
MapReduce jobs (e.q., PIG by Yahoo!)

- Declarative languages (e.qg., Hive by Facebook or SQL/
Tenzing by Google)

- Increased integration of DBMS with MapReduce

CS 377 [Spring 2016] - Ho

Parallel DBMS vs MapReduce

Parallel DBMS
- Relational data model and schema
- Declarative query language (SQL)
- Easily combine operators into complex queries
- Query optimization, indexing, and physical tuning

-+ Streams data from one operator to next without
blocking

CS 377 [Spring 2016] - Ho

Parallel DBMS vs MapReduce (2)

MapReduce
- Data model is file with key-value pairs
+ Pre-loading data is not necessary before processing
- Easy to write user-defined operators
- Easily add nodes to the cluster

- Arguably more scalable, but also needs more nodes

CS 377 [Spring 2016] - Ho

Spark: MapReduce Replacement

.Spc:rr‘l’zZ

Run programs up to 100x faster than MapReduce In
memory or 10x faster on disk

Tagline: Lightning-fast cluster computing

Easy to use with support for Java, Scala, Python, and R

Logistic Regression Performance

f 127 s [iteration
& 3500

§3ooo j
cnz 00 & Hadoop
2000

Spk

=2
) 5o ——— ‘— l l
500
: . first iteration 174 s
1

frthtt6

Nmb flt atio

mp://d287f0h5fel5hu.cloudfront.net/blog/wp-contentjuploads/201 5/12/4-481x300.jpg
CS 377 [Spring 2016] - Ho

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg

Big Data Systems: Recap
- Big Data (4 V’s)
- Parallel/Distributed DBMS
+ Different architectures
+ Data distribution

- Query processing

- MapReduce

CS 377 [Spring 2016] - Ho

