
Big Data Systems
CS 377: Database Systems
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Recap: What Has Been Covered
Database  
overview  
(1 + 2)

Conceptual data 
model — ER 

model (3)

Representational 
data model — 

Relational model 
(4)

Relational query 
languages — RA & 

RC (5 + 6)

SQL — Data definition 
& manipulation, 

queries, & views (7-11)  

SQL application 
programming 

 — JDBC / PHP  
(12 & 22)

Database design 
— normal forms 

(14 + 15)

File storage 
(16)

Indexes 
(17 + 18)

Query 
processing & 
optimization 

(19 + 20)

Transaction 
management 

(21)
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What I hope you’ve learned… 

• Design a database  
Requirements -> ER diagram -> Relational model -> 
Database normalization 

• Query a database (even with concurrent users and 
crashes)  
Relational algebra, calculus, SQL queries, transactions 

• Optimizing the performance of your database (at a high 
level)
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Recap: DBMS Architecture
• Most aspects of 

traditional database 
system is 
“understood” (high-level)  

• Learned enough to be 
“dangerous” 

• Additional details can be 
picked up 

• Courses 

• On your own
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Goal of Today’s Lecture
• High-level overview of dealing with “big data” 

• What is big data? 

• What are different technologies I can use? 

• Not meant to be detailed examination of all aspects of 
systems covered
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Data Never Sleeps

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/
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4 V’s of Big Data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data
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Motivation for Parallel / Distributed DBMS
• Single, monolithic DBMS is impractical and expensive 

• Constantly need to move data to deal with storage 

• Improve performance 

• Increased availability & reliability 

• Potentially lower cost of ownership 

• Easier, more economical system expansion
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Parallel/Distributed DBMS
• Data partitioned across multiple disks 

• Allows parallel I/O for better speed-up 

• Individual relational operations (e.g., sort, join, aggregation) 
can be executed in parallel 

• Each processor can work independently on its own 
partition 

• Queries can be run in parallel with each other 

• Concurrency control takes care of conflicts
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Parallel vs Distributed
• Parallel DBMS: 

• Nodes are physically close to each other 

• Nodes connected via high-speed LAN 

• Communication cost is small 

• Distributed DBMS 

• Nodes can be far away 

• Nodes connected via public network 

• Communication cost and problems shouldn’t be ignored
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Parallel/Distributed DBMS Issues
• How to distribute the data 

• How to optimize the cost of queries 

• Data transmission + local processing 

• How to perform concurrency control 

• How to make system resilient to failures and achieve 
atomicity & durability
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Scale-Up vs Scale-Out
• Terminology to measure performance 

• Speed-up: using more processors, how much faster will 
the task run (assuming same problem size)? 

• Scale-up: using more processors, does performance 
remain the same as we increase problem size? 

• Scale-out: using a larger number of servers, does 
performance improve?
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Parallel Architectures

http://image.slidesharecdn.com/hadooparchitecture-091019175427-phpapp01/95/big-data-
analytics-with-hadoop-18-638.jpg?cb=1411533606

http://image.slidesharecdn.com/hadooparchitecture-091019175427-phpapp01/95/big-data-analytics-with-hadoop-18-638.jpg?cb=1411533606
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Shared Everything
• Nodes share RAM + disk 

• Dozes to hundreds of processors 

• Easy to use and program 

• Expensive to scale — last remaining 
cash cow in the hardware industry 

• Example: SQL server running on 
single machine but leverage many 
threads to get a query to run faster
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Shared Disk
• Nodes share same disk 

• Easy fault tolerance + easy 
consistency (single copy of DB) 

• Hard to scale past a certain point — 
existing deployments typically have 
fewer than 10 machines 

• Example: Oracle servers use this 
paradigm quite a bit
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Shared Nothing
• Each instance has its own CPU, 

memory, and disk 

• Connected via fast network 

• Easy to increase capacity 

• Hard to ensure consistency 

• Most scalable architecture 

• Most difficult to administer and tune!
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How to Distribute the Data?
• Replication: system maintains multiple copies of data, stored 

in different sites for faster retrieval and fault tolerance 

• (PRO) Improves availability, parallelism, and reduced data 
transfer 

• (CON) Increased cost of updates, complexity of 
concurrency control 

• Fragmentation: relation is partitioned into several fragments 
stored at distinct sites 

• Combination of both replication & fragmentation
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Example: Replication & Fragmentation

Figure 25.1 from FoDS book
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Fragmentation Strategies
• Horizontal partition: each tuple is assigned to one or more 

fragments 

• Round robin 

• Hash partitioning 

• Range partitioning 

• Vertical partition: relation is split into smaller schemas 
each with a common candidate key to ensure lossless 
join
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Example: Horizontal Partition

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=�Hillside��(account )

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=�Valleyview��(account )
http://www.db-book.com/

http://www.db-book.com/
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Example: Vertical Partition

http://www.db-book.com/

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info )

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info )

http://www.db-book.com/


CS 377 [Spring 2016] - Ho

Query Processing in Distributed DBMS
• Single, centralized system — primary criterion for cost is 

just number of disk accesses 

• Distributed system 

• Cost of data transmission over network 

• Potential gain in performance from having several sites 
process parts of the query
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Review: Query Processing Single Machine
Given two relations R(A, B) and S(B,C) with no indexes, how do we 
compute the following? 

• Selection:  
Ans: Scan file R, select records with A = 123 

• Group by:  
Ans: Use either sorting or hashing to aggregate on A then apply 
sum to each group 

• Join:  
Ans: Nested block join, create hash index on B for smaller 
relation and doing hash join, or sort on B and do sort-merge join

�A=123(R)

AFSUM(B)(R)

R ⇤ S
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Query Processing: Parallel/Distributed DBMS

Given two relations R(A, B) and S(B,C) with horizontal 
partitioning and no indexes, how do we compute the 
following? 

• Selection:  
Ans: Relatively easy, not that different from single 

• Group by: 
Ans: If already partitioned based on A to each system 
(hash or range), relatively easy. Otherwise, if it is round 
robin, need to pass data to the nodes to aggregate the 
same values together

�A=123(R)

AFSUM(B)(R)
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Query Processing: Parallel/Distributed DBMS (2)

• Join: 

• Strategy 1: Transfer both R and S into one central 
location and join (very expensive from sending) 

• Strategy 2: Perform local join by just sending the 
joining column of one relation, S, to where the other 
one is located, R (minimizes data transmission)  

R ⇤ S
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Example: Distributed Join

A B
1 2
3 2

B C
4 7
4 9

Node 1

R1 S1
A B
5 4
7 6

B C
2 3
2 9

Node 2

R2 S2
A B
8 6
9 6

B C
6 7
6 9

Node 3

R3 S3

A B
1 2
3 2

B C
2 3
2 9

Node 1

R1 S2
A B
5 4

B C
4 7
4 9

Node 2

R2’ S1
A B
7 6
8 6
9 6

B C
6 7
6 9

Node 3

R2’ + R3 S3

R1 S2
S1 R2 S3
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Example: Distributed Join (2)
A B C
1 2 3
1 2 9
3 2 3
3 2 9

Node 1

A B C
5 4 7
5 4 9

Node 2

A B C
7 6 7
7 6 9
8 6 7
… … …

Node 3

combine tuples for final output
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Distributed Transactions & Recovery
Problems arising only in distributed/parallel setting 

• Dealing with multiple copies of data items — how to maintain 
consistency amongst the copies 

• Failure of individual sites — what to do when one site fails and then 
rejoins the system later 

• Failure of communication issues 

• Distributed commit — what to do if some nodes fail during commit 
process? 

• Distributed deadlock
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Parallel / Distributed Database Properties
• Advantages 

• Data sharing 

• Reliability and availability 

• Improved query processing speed 

• Disadvantages 

• May increase processing overhead 

• Harder to ensure ACID guarantees 

• More database design issues
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MapReduce
• Initially developed by Jeffrey Dean & Sanjay Ghemawat at 

Google [2004] 

• Open source implementation: Apache Hadoop 

• High-level programming model and implementation for 
large-scale parallel data processing 

• Designed to simplify the task of writing parallel programs
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MapReduce: Overview
• Read partitioned data 

• Map: extract something you care about from each record 

• Group by key: sort and shuffle (done by the system) 

• Reduce: aggregate, summarize, filter, or transform 

• Write the result

Outline stays the same, map and reduce should be 
tailored to the problem
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MapReduce: Map Step

v"k"

k" v"

k" v"

map$
v"k"

v"k"

…$

k" v"
map$

Input 
key-value pairs 

Intermediate 
key-value pairs 

…$

k" v"

http://www.mmds.org/#book

http://www.mmds.org/#book
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MapReduce: Reduce Step

k" v"

…"

k" v"

k" v"

k" v"

Intermediate 
key-value pairs 

Group"
by"key"

reduce"

reduce"

k" v"

k" v"

k" v"

…"

k" v"

…"

k" v"

k" v" v"

v" v"

Key-value groups 
Output  
key-value pairs 

http://www.mmds.org/#book

http://www.mmds.org/#book
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Example: Word Counting
• We have a huge text document (~ 1 million words) 

• Task: Count the number of times each distinct word appears 
in the file 

• Traditional DBMS 

• Load document words into a table 

• SQL query: 
SELECT count(*) 
FROM document 
GROUP BY word
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Example: Word Counting (MapReduce)

The crew of the space 
shuttle Endeavor recently 
re turned to Ear th as 
ambassadors, harbingers of 
a new era o f space 
exploration. Scientists at 
NASA are saying that the 
recent assembly of the 
Dextre bot is the first step in 
a long-term space-based 
man/mache partnership. 
'"The work we're doing now 
-- the robotics we're doing 
-- is what we're going to 
need …………………….. 

Big document 

(The,&1)&
(crew,&1)&
(of,&1)&
(the,&1)&

(space,&1)&
(shuttle,&1)&

(Endeavor,&1)&
(recently,&1)&

….&

(crew,&1)&
(crew,&1)&
(space,&1)&
(the,&1)&
(the,&1)&
(the,&1)&

(shuttle,&1)&
(recently,&1)&

…&

(crew,&2)&
(space,&1)&
(the,&3)&

(shuttle,&1)&
(recently,&1)&

…&

MAP:%
Read&input&and&
produces&a&set&of&
key@value&pairs%

Group%by%key:%
Collect&all&pairs&
with&same&key%

Reduce:%
Collect&all&values&
belonging&to&the&
key&and&output%

(key, value) 

Provided by the 
programmer 

Provided by the 
programmer 

(key, value) (key, value) 

Se
qu

en
tia

lly
&re

ad
&th

e&
da

ta
&

O
nl
y%
%&&
se
qu

en
tia

l&&
&&r
ea

ds
&

http://www.mmds.org/#book

http://www.mmds.org/#book
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MapReduce Ecosystem
Many extensions to address limitations 

• Capabilities to write directed acyclic graphs of 
MapReduce jobs (e.g., PIG by Yahoo!) 

• Declarative languages (e.g., Hive by Facebook or SQL/
Tenzing by Google) 

• Increased integration of DBMS with MapReduce
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Parallel DBMS vs MapReduce
Parallel DBMS 

• Relational data model and schema 

• Declarative query language (SQL) 

• Easily combine operators into complex queries 

• Query optimization, indexing, and physical tuning 

• Streams data from one operator to next without 
blocking
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Parallel DBMS vs MapReduce (2)
MapReduce 

• Data model is file with key-value pairs 

• Pre-loading data is not necessary before processing 

• Easy to write user-defined operators 

• Easily add nodes to the cluster 

• Arguably more scalable, but also needs more nodes
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Spark: MapReduce Replacement                    
• Tagline: Lightning-fast cluster computing 

• Run programs up to 100x faster than MapReduce in 
memory or 10x faster on disk 

• Easy to use with support for Java, Scala, Python, and R

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg
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Big Data Systems: Recap
• Big Data (4 V’s) 

• Parallel/Distributed DBMS 

• Different architectures 

• Data distribution 

• Query processing 

• MapReduce


