
Big Data Systems
CS 377: Database Systems

CS 377 [Spring 2016] - Ho

Recap: What Has Been Covered
Database
overview  
(1 + 2)

Conceptual data
model — ER

model (3)

Representational
data model —

Relational model
(4)

Relational query
languages — RA &

RC (5 + 6)

SQL — Data definition
& manipulation,

queries, & views (7-11)

SQL application
programming 

 — JDBC / PHP  
(12 & 22)

Database design
— normal forms

(14 + 15)

File storage 
(16)

Indexes 
(17 + 18)

Query
processing &
optimization 

(19 + 20)

Transaction
management 

(21)

CS 377 [Spring 2016] - Ho

Recap: What Has Been Covered
Database
overview  
(1 + 2)

Conceptual data
model — ER

model (3)

Representational
data model —

Relational model
(4)

Relational query
languages — RA &

RC (5 + 6)

SQL — Data definition
& manipulation,

queries, & views (7-11)

SQL application
programming 

 — JDBC / PHP  
(12 & 22)

Database design
— normal forms

(14 + 15)

File storage 
(16)

Indexes 
(17 + 18)

Query
processing &
optimization 

(19 + 20)

Transaction
management 

(21)

What I hope you’ve learned…

• Design a database  
Requirements -> ER diagram -> Relational model ->
Database normalization

• Query a database (even with concurrent users and
crashes)  
Relational algebra, calculus, SQL queries, transactions

• Optimizing the performance of your database (at a high
level)

CS 377 [Spring 2016] - Ho

Recap: DBMS Architecture
• Most aspects of

traditional database
system is
“understood” (high-level)

• Learned enough to be
“dangerous”

• Additional details can be
picked up

• Courses

• On your own

CS 377 [Spring 2016] - Ho

Goal of Today’s Lecture
• High-level overview of dealing with “big data”

• What is big data?

• What are different technologies I can use?

• Not meant to be detailed examination of all aspects of
systems covered

CS 377 [Spring 2016] - Ho

Data Never Sleeps

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/

CS 377 [Spring 2016] - Ho

4 V’s of Big Data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

CS 377 [Spring 2016] - Ho

Motivation for Parallel / Distributed DBMS
• Single, monolithic DBMS is impractical and expensive

• Constantly need to move data to deal with storage

• Improve performance

• Increased availability & reliability

• Potentially lower cost of ownership

• Easier, more economical system expansion

CS 377 [Spring 2016] - Ho

Parallel/Distributed DBMS
• Data partitioned across multiple disks

• Allows parallel I/O for better speed-up

• Individual relational operations (e.g., sort, join, aggregation)
can be executed in parallel

• Each processor can work independently on its own
partition

• Queries can be run in parallel with each other

• Concurrency control takes care of conflicts

CS 377 [Spring 2016] - Ho

Parallel vs Distributed
• Parallel DBMS:

• Nodes are physically close to each other

• Nodes connected via high-speed LAN

• Communication cost is small

• Distributed DBMS

• Nodes can be far away

• Nodes connected via public network

• Communication cost and problems shouldn’t be ignored

CS 377 [Spring 2016] - Ho

Parallel/Distributed DBMS Issues
• How to distribute the data

• How to optimize the cost of queries

• Data transmission + local processing

• How to perform concurrency control

• How to make system resilient to failures and achieve
atomicity & durability

CS 377 [Spring 2016] - Ho

Scale-Up vs Scale-Out
• Terminology to measure performance

• Speed-up: using more processors, how much faster will
the task run (assuming same problem size)?

• Scale-up: using more processors, does performance
remain the same as we increase problem size?

• Scale-out: using a larger number of servers, does
performance improve?

CS 377 [Spring 2016] - Ho

Parallel Architectures

http://image.slidesharecdn.com/hadooparchitecture-091019175427-phpapp01/95/big-data-
analytics-with-hadoop-18-638.jpg?cb=1411533606

http://image.slidesharecdn.com/hadooparchitecture-091019175427-phpapp01/95/big-data-analytics-with-hadoop-18-638.jpg?cb=1411533606

CS 377 [Spring 2016] - Ho

Shared Everything
• Nodes share RAM + disk

• Dozes to hundreds of processors

• Easy to use and program

• Expensive to scale — last remaining
cash cow in the hardware industry

• Example: SQL server running on
single machine but leverage many
threads to get a query to run faster

CS 377 [Spring 2016] - Ho

Shared Disk
• Nodes share same disk

• Easy fault tolerance + easy
consistency (single copy of DB)

• Hard to scale past a certain point —
existing deployments typically have
fewer than 10 machines

• Example: Oracle servers use this
paradigm quite a bit

CS 377 [Spring 2016] - Ho

Shared Nothing
• Each instance has its own CPU,

memory, and disk

• Connected via fast network

• Easy to increase capacity

• Hard to ensure consistency

• Most scalable architecture

• Most difficult to administer and tune!

CS 377 [Spring 2016] - Ho

How to Distribute the Data?
• Replication: system maintains multiple copies of data, stored

in different sites for faster retrieval and fault tolerance

• (PRO) Improves availability, parallelism, and reduced data
transfer

• (CON) Increased cost of updates, complexity of
concurrency control

• Fragmentation: relation is partitioned into several fragments
stored at distinct sites

• Combination of both replication & fragmentation

CS 377 [Spring 2016] - Ho

Example: Replication & Fragmentation

Figure 25.1 from FoDS book

CS 377 [Spring 2016] - Ho

Fragmentation Strategies
• Horizontal partition: each tuple is assigned to one or more

fragments

• Round robin

• Hash partitioning

• Range partitioning

• Vertical partition: relation is split into smaller schemas
each with a common candidate key to ensure lossless
join

CS 377 [Spring 2016] - Ho

Example: Horizontal Partition

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=�Hillside��(account)

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=�Valleyview��(account)
http://www.db-book.com/

http://www.db-book.com/

CS 377 [Spring 2016] - Ho

Example: Vertical Partition

http://www.db-book.com/

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info)

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info)

http://www.db-book.com/

CS 377 [Spring 2016] - Ho

Query Processing in Distributed DBMS
• Single, centralized system — primary criterion for cost is

just number of disk accesses

• Distributed system

• Cost of data transmission over network

• Potential gain in performance from having several sites
process parts of the query

CS 377 [Spring 2016] - Ho

Review: Query Processing Single Machine
Given two relations R(A, B) and S(B,C) with no indexes, how do we
compute the following?

• Selection:  
Ans: Scan file R, select records with A = 123

• Group by:  
Ans: Use either sorting or hashing to aggregate on A then apply
sum to each group

• Join:  
Ans: Nested block join, create hash index on B for smaller
relation and doing hash join, or sort on B and do sort-merge join

�A=123(R)

AFSUM(B)(R)

R ⇤ S

CS 377 [Spring 2016] - Ho

Query Processing: Parallel/Distributed DBMS

Given two relations R(A, B) and S(B,C) with horizontal
partitioning and no indexes, how do we compute the
following?

• Selection:  
Ans: Relatively easy, not that different from single

• Group by: 
Ans: If already partitioned based on A to each system
(hash or range), relatively easy. Otherwise, if it is round
robin, need to pass data to the nodes to aggregate the
same values together

�A=123(R)

AFSUM(B)(R)

CS 377 [Spring 2016] - Ho

Query Processing: Parallel/Distributed DBMS (2)

• Join:

• Strategy 1: Transfer both R and S into one central
location and join (very expensive from sending)

• Strategy 2: Perform local join by just sending the
joining column of one relation, S, to where the other
one is located, R (minimizes data transmission)  

R ⇤ S

CS 377 [Spring 2016] - Ho

Example: Distributed Join

A B
1 2
3 2

B C
4 7
4 9

Node 1

R1 S1
A B
5 4
7 6

B C
2 3
2 9

Node 2

R2 S2
A B
8 6
9 6

B C
6 7
6 9

Node 3

R3 S3

A B
1 2
3 2

B C
2 3
2 9

Node 1

R1 S2
A B
5 4

B C
4 7
4 9

Node 2

R2’ S1
A B
7 6
8 6
9 6

B C
6 7
6 9

Node 3

R2’ + R3 S3

R1 S2
S1 R2 S3

CS 377 [Spring 2016] - Ho

Example: Distributed Join (2)
A B C
1 2 3
1 2 9
3 2 3
3 2 9

Node 1

A B C
5 4 7
5 4 9

Node 2

A B C
7 6 7
7 6 9
8 6 7
… … …

Node 3

combine tuples for final output

CS 377 [Spring 2016] - Ho

Distributed Transactions & Recovery
Problems arising only in distributed/parallel setting

• Dealing with multiple copies of data items — how to maintain
consistency amongst the copies

• Failure of individual sites — what to do when one site fails and then
rejoins the system later

• Failure of communication issues

• Distributed commit — what to do if some nodes fail during commit
process?

• Distributed deadlock

CS 377 [Spring 2016] - Ho

Parallel / Distributed Database Properties
• Advantages

• Data sharing

• Reliability and availability

• Improved query processing speed

• Disadvantages

• May increase processing overhead

• Harder to ensure ACID guarantees

• More database design issues

CS 377 [Spring 2016] - Ho

MapReduce
• Initially developed by Jeffrey Dean & Sanjay Ghemawat at

Google [2004]

• Open source implementation: Apache Hadoop

• High-level programming model and implementation for
large-scale parallel data processing

• Designed to simplify the task of writing parallel programs

CS 377 [Spring 2016] - Ho

MapReduce: Overview
• Read partitioned data

• Map: extract something you care about from each record

• Group by key: sort and shuffle (done by the system)

• Reduce: aggregate, summarize, filter, or transform

• Write the result

Outline stays the same, map and reduce should be
tailored to the problem

CS 377 [Spring 2016] - Ho

MapReduce: Map Step

v"k"

k" v"

k" v"

map$
v"k"

v"k"

…$

k" v"
map$

Input
key-value pairs

Intermediate
key-value pairs

…$

k" v"

http://www.mmds.org/#book

http://www.mmds.org/#book

CS 377 [Spring 2016] - Ho

MapReduce: Reduce Step

k" v"

…"

k" v"

k" v"

k" v"

Intermediate
key-value pairs

Group"
by"key"

reduce"

reduce"

k" v"

k" v"

k" v"

…"

k" v"

…"

k" v"

k" v" v"

v" v"

Key-value groups
Output
key-value pairs

http://www.mmds.org/#book

http://www.mmds.org/#book

CS 377 [Spring 2016] - Ho

Example: Word Counting
• We have a huge text document (~ 1 million words)

• Task: Count the number of times each distinct word appears
in the file

• Traditional DBMS

• Load document words into a table

• SQL query: 
SELECT count(*) 
FROM document 
GROUP BY word

CS 377 [Spring 2016] - Ho

Example: Word Counting (MapReduce)

The crew of the space
shuttle Endeavor recently
re turned to Ear th as
ambassadors, harbingers of
a new era o f space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing
-- is what we're going to
need ……………………..

Big document

(The,&1)&
(crew,&1)&
(of,&1)&
(the,&1)&

(space,&1)&
(shuttle,&1)&

(Endeavor,&1)&
(recently,&1)&

….&

(crew,&1)&
(crew,&1)&
(space,&1)&
(the,&1)&
(the,&1)&
(the,&1)&

(shuttle,&1)&
(recently,&1)&

…&

(crew,&2)&
(space,&1)&
(the,&3)&

(shuttle,&1)&
(recently,&1)&

…&

MAP:%
Read&input&and&
produces&a&set&of&
key@value&pairs%

Group%by%key:%
Collect&all&pairs&
with&same&key%

Reduce:%
Collect&all&values&
belonging&to&the&
key&and&output%

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value) (key, value)

Se
qu

en
tia

lly
&re

ad
&th

e&
da

ta
&

O
nl
y%
%&&
se
qu

en
tia

l&&
&&r
ea

ds
&

http://www.mmds.org/#book

http://www.mmds.org/#book

CS 377 [Spring 2016] - Ho

MapReduce Ecosystem
Many extensions to address limitations

• Capabilities to write directed acyclic graphs of
MapReduce jobs (e.g., PIG by Yahoo!)

• Declarative languages (e.g., Hive by Facebook or SQL/
Tenzing by Google)

• Increased integration of DBMS with MapReduce

CS 377 [Spring 2016] - Ho

Parallel DBMS vs MapReduce
Parallel DBMS

• Relational data model and schema

• Declarative query language (SQL)

• Easily combine operators into complex queries

• Query optimization, indexing, and physical tuning

• Streams data from one operator to next without
blocking

CS 377 [Spring 2016] - Ho

Parallel DBMS vs MapReduce (2)
MapReduce

• Data model is file with key-value pairs

• Pre-loading data is not necessary before processing

• Easy to write user-defined operators

• Easily add nodes to the cluster

• Arguably more scalable, but also needs more nodes

CS 377 [Spring 2016] - Ho

Spark: MapReduce Replacement
• Tagline: Lightning-fast cluster computing

• Run programs up to 100x faster than MapReduce in
memory or 10x faster on disk

• Easy to use with support for Java, Scala, Python, and R

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg

http://d287f0h5fel5hu.cloudfront.net/blog/wp-content/uploads/2015/12/4-481x300.jpg

CS 377 [Spring 2016] - Ho

Big Data Systems: Recap
• Big Data (4 V’s)

• Parallel/Distributed DBMS

• Different architectures

• Data distribution

• Query processing

• MapReduce

